J Vet Sci.  2010 Sep;11(3):197-203. 10.4142/jvs.2010.11.3.197.

Prevalence of tick-borne encephalitis virus in ticks from southern Korea

Affiliations
  • 1Veterinary Internal Medicine, Research Institute and BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea. jschae@snu.ac.kr
  • 2Division of Arboviruses, Center for Immunology and Pathology, Korea National Institute of Health, Seoul 122-701, Korea. juyran@nih.go.kr
  • 35th Medical Detachment, 168th Multifunctional Medical Battalion, 65th Medical Brigade, Unit #15247, APO AP 96205-5247, Seoul, Korea.
  • 4Force Health Protection and Preventive Medicine, 65th Medical Brigade, Unit #15281, APO AP 96205-5281, Seoul, Korea.
  • 5Defense Logistics Agency, 8725 John J. Kingman Road, Suite 2639 Attn: DES-EQ, Fort Belvoir, VA 22060-6221, USA.

Abstract

The prevalence of tick-borne encephalitis virus (TBEV) in southern Korea was determined by collecting ticks using tick drags. A total of 4,077 of 6,788 ticks collected were pooled (649 pools) according to collection site, species, and developmental stage and assayed for TBEV. The TBEV protein E and NS5 gene fragments were detected using RT-nested PCR in six pools of nymphs collected from Jeju Island (2,491 ticks). The minimum field detection rates for TBEV were 0.17% and 0.14% for Haemaphysalis longicornis and Haemayphysalis. flava nymphs, respectively. The 252 bp NS5 and 477 bp protein E gene amplicons were sequenced. Phylogenetic analysis showed that the NS5 and protein E genes of the Jeju strain were clustered with Western subtype (98.0% and 99.4% identity, respectively). The Western subtype of TBEV is endemic in Korea, including Jeju Island. The study of vector and zoonotic host susceptibility to TBEV is required to better understand its potential impact on public health.

Keyword

Haemaphysalis flava; Haemaphysalis longicornis; Korea; tick; tick-borne encephalitis virus

MeSH Terms

Animals
Arachnid Vectors/*virology
Base Sequence
DNA Primers/genetics
Encephalitis Viruses, Tick-Borne/classification/*genetics
Encephalitis, Tick-Borne/*epidemiology
Molecular Sequence Data
*Phylogeny
Prevalence
Republic of Korea/epidemiology
Reverse Transcriptase Polymerase Chain Reaction
Sequence Analysis, DNA
Ticks/*virology
Viral Envelope Proteins/genetics

Figure

  • Fig. 1 Distribution of tick collection sites (#1~113) with open circles (○) representing sites negative for TBEV and closed circles (•) representing sites positive for TBEV ticks [Positive collection sites: #25 (N 33° 31' 30.47", E 126° 35' 49.27", Jeju-si, Jeju Island), #46 (N 33° 25' 04.84", E 26° 37' 48.07", Jocheon-eup, Bukjeju-gun, Jeju Island), #52 (N 33° 20' 24.32", E 126° 42' 21.13", Namwon-eup, Namjeju-gun, Jeju Island), #65 (N 33° 26' 09.89", E 126° 29' 20.72", Jeju-si, Jeju Island), #68 (N 33° 25' 39.22", E 126° 29' 38.40", Mt. Halla, Jeju Island)].

  • Fig. 2 Alignment of the NS5 gene sequence from positive tick samples with available TBEV genetic information. Western subtype strains are highlighted in dark gray and Far Eastern subtype strains are highlighted in light gray.

  • Fig. 3 Phylogenetic tree showing the position of tick-borne encephalitis virus strain (JEJU) identified from Jeju Island, Korea.


Cited by  1 articles

Severe Fever with Thrombocytopenia Syndrome Virus, Crimean-Congo Haemorrhagic Fever Virus, and Migratory Birds
Keun Hwa Lee, Jolyon M. Medlock, Sang Taek Heo
J Bacteriol Virol. 2013;43(4):235-243.    doi: 10.4167/jbv.2013.43.4.235.


Reference

1. Alekseev AN. The effects of global climatic changes on bloodsucking ectoparasites and pathogens they transmit. Vestn Ross Akad Med Nauk. 2006. 3:21–25.
2. Chiba N, Iwasaki T, Mizutani T, Kariwa H, Kurata T, Takashima I. Pathogenicity of tick-borne encephalitis virus isolated in Hokkaido, Japan in mouse model. Vaccine. 1999. 17:779–787.
Article
3. Danielová V, Kliegrová S, Daniel M, Benes C. Influence of climate warming on tick-borne encephalitis expansion to higher altitudes over the last decade (1997-2006) in the Highland Region (Czech Republic). Cent Eur J Public Health. 2008. 16:4–11.
Article
4. Dobler G, Zöller G, Poponnikova T, Gniel D, Pfeffer M, Essbauer S. Tick-borne encephalitis virus in a highly endemic area in Kemerovo (Western Siberia, Russia). Int J Med Microbiol. 2008. 298:suppl. 94–101.
Article
5. Donoso Mantke O, Schädler R, Niedrig M. A survey on cases of tick-borne encephalitis in European countries. Euro Surveill. 2008. 13:pii:18848.
Article
6. Durden LA, McLean RG, Oliver JH Jr, Ubico SR, James AM. Ticks, Lyme disease spirochetes, trypanosomes, and antibody to encephalitis viruses in wild birds from coastal Georgia and South Carolina. J Parasitol. 1997. 83:1178–1182.
Article
7. Ecker M, Allison SL, Meixner T, Heinz FX. Sequence analysis and genetic classification of tickborne encephalitis viruses from Europe and Asia. J Gen Virol. 1999. 80:179–185.
Article
8. Elisabet L. Climate and tickborne encephalitis. Conserv Ecol. 1998. 2:5.
9. Gern L. Borrelia burgdorferi sensu lato, the agent of lyme borreliosis: life in the wilds. Parasite. 2008. 15:244–247.
Article
10. Günther G, Haglund M. Tick-borne encephalopathies: epidemiology, diagnosis, treatment and prevention. CNS Drugs. 2005. 19:1009–1032.
11. Kim SY, Jeong YE, Yun SM, Lee IY, Han MG, Ju YR. Molecular evidence for tick-borne encephalitis virus in ticks in South Korea. Med Vet Entomol. 2009. 23:15–20.
Article
12. Kim SY, Yun SM, Han MG, Lee IY, Lee NY, Jeong YE, Lee BC, Ju YR. Isolation of tick-borne encephalitis viruses from wild rodents, South Korea. Vector-borne Zoonotic Dis. 2008. 8:7–13.
Article
13. Korenberg EI, Kovalevskii YV. Main features of tick-borne encephalitis eco-epidemiology in Russia. Zentralbl Bakteriol. 1999. 289:525–539.
Article
14. Lu Z, Bröker M, Liang G. Tick-borne encephalitis in mainland China. Vector-borne Zoonotic Dis. 2008. 8:713–720.
Article
15. Mavtchoutko V, Vene S, Haglund M, Forsgren M, Duks A, Kalnina V, Hörling J, Lundkvist A. Characterization of tick-borne encephalitis virus from Latvia. J Med Virol. 2000. 60:216–222.
16. Monath TP, Heinz FX. Fields BN, Knipe DM, Howley PM, editors. Flaviviruses. Fields Virology. 1996. 3rd ed. Philadelphia: Lippincot-Raven;961–1034.
17. Puchhammer-Stöckl E, Kunz C, Mandl CW, Heinz FX. Identification of tick-borne encephalitis virus ribonucleic acid in tick suspensions and in clinical specimens by a reverse transcription-nested polymerase chain reaction assay. Clin Diagn Virol. 1995. 4:321–326.
Article
18. Randolph SE. Evidence that climate change has caused 'emergence' of tick-borne diseases in Europe. Int J Med Microbiol. 2004. 37:5–15.
Article
19. Randolph SE. Dynamics of tick-borne disease systems: minor role of recent climate change. Rev Sci Tech. 2008. 27:367–381.
20. Ree HI. Medical Entomology: Medical Arthropodology. 2005. 4th ed. Seoul: Komoonsa;345–390.
21. Süss J. Epidemiology and ecology of TBE relevant to the production of effective vaccines. Vaccine. 2003. 21:suppl. S19–S35.
Article
22. Süss J. Importance of tick-borne encephalitis (TBE) increases in Europe. Dtsch Med Wochenschr. 2005. 130:1397–1400.
23. Süss J. Tick-borne encephalitis in Europe and beyond - the epidemiological situation as of 2007. Euro Surveill. 2008. 13:pii:18916.
Article
24. Takashima I, Hayasaka D, Goto A, Kariwa H, Mizutani T. Epidemiology of tick-borne encephalitis (TBE) and phylogenetic analysis of TBE viruses in Japan and Far Eastern Russia. Jpn J Infect Dis. 2001. 54:1–11.
25. Takashima I, Morita K, Chiba M, Hayasaka D, Sato T, Takezawa C, Igarashi A, Kariwa H, Yoshimatsu K, Arikawa J, Hashimoto N. A case of tick-borne encephalitis in Japan and isolation of the virus. J Clin Microbiol. 1997. 35:1943–1947.
Article
26. Takeda T, Ito T, Osada M, Takahashi K, Takashima I. Isolation of tick-borne encephalitis virus from wild rodents and a seroepizootiologic survey in Hokkaido, Japan. Am J Trop Med Hyg. 1999. 60:287–291.
Article
27. Ternovoi VA, Kurzhukov GP, Sokolov YV, Ivanov GY, Ivanisenko VA, Loktev AV, Ryder RW, Netesov SV, Loktev VB. Tick-borne encephalitis with hemorrhagic syndrome, Novosibirsk region, Russia, 1999. Emerg Infect Dis. 2003. 9:743–746.
Article
28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res. 1997. 25:4876–4882.
Article
29. Waldenström J, Lundkvist A, Falk KI, Garpmo U, Bergström S, Lindegren G, Sjöstedt A, Mejlon H, Fransson T, Haemig PD, Olsen B. Migrating birds and tickborne encephalitis virus. Emerg Infect Dis. 2007. 13:1215–1218.
Article
30. Yamaguti N, Tipton VJ, Keegan HL, Toshioka S. Ticks of Japan, Korea, and the Ryukyu Islands. Brigham Young Univ Sci Bull Biol Ser. 1971. 15:1–226.
Full Text Links
  • JVS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr