J Vet Sci.  2011 Sep;12(3):291-293. 10.4142/jvs.2011.12.3.291.

Differential brain angiotensin-II type I receptor expression in hypertensive rats

Affiliations
  • 1Veterinary Sciences Department, Center for Agrarian Sciences, Federal University of Paraiba, Areia, PB 58397-000, Brazil. valdir@cca.ufpb.br
  • 2Laboratory of Pharmaceutical Technology, Federal University of Paraiba, Joao Pessoa, PB 58051-900, Brazil.

Abstract

Blood-borne angiotensin-II (Ang-II) has profound effects in the brain. We tested the hypothesis that Ang-II-dependent hypertension involves differential Ang-II type I (AT1) receptors expression in the subfornical organ (SFO) and the rostral ventrolateral medulla (RVLM). Male Wistar rats were implanted with 14-day osmotic minipump filled with Ang-II (150 ng/kg/min) or saline. AT1 receptor mRNA levels were detected in the SFO and RVLM by reverse transcription-polymerase chain reaction (RT-PCR). Ang-II caused hypertension (134 +/- 10 mmHg vs. 98 +/- 9 mmHg, n = 9, p < 0.05). RT-PCR revealed that Ang-II infusion induced increased AT1 receptor mRNA levels in RVLM and decreased in SFO. Our data suggest that Ang-II-induced hypertension involves differential expression of brain AT1 receptors.

Keyword

blood pressure; losartan; rostral ventrolateral medulla; subfornical organ; sympathetic activity

MeSH Terms

Angiotensin II/*metabolism
Animals
Hypertension/chemically induced/*metabolism
Male
Medulla Oblongata/*metabolism
RNA, Messenger/genetics
Rats
Rats, Wistar
Receptor, Angiotensin, Type 1/*genetics
Reverse Transcriptase Polymerase Chain Reaction
Signal Transduction
Subfornical Organ/*metabolism

Figure

  • Fig. 1 Real time-PCR analysis at 14 days of angiotensin-II (Ang-II) infusion reveals down-regulation of Ang-II type I receptors (AT1 R) in the subfornical organ (A and B) and up-regulation of AT1 R in the rostral ventrolateral medulla (C and D). *p < 0.05, when compared to saline group (n = 3, biological samples; 5 rat per sample).


Reference

1. Allen AM, Dosanjh JK, Erac M, Dassanayake S, Hannan RD, Thomas WG. Expression of constitutively active angiotensin receptors in the rostral ventrolateral medulla increases blood pressure. Hypertension. 2006. 47:1054–1061.
Article
2. Allen AM, Moeller I, Jenkins TA, Zhuo J, Aldred GP, Chai SY, Mendelsohn FAO. Angiotensin receptors in the nervous system. Brain Res Bull. 1998. 47:17–28.
Article
3. Braga VA. Dietary salt enhances angiotensin-II-induced superoxide formation in the rostral ventrolateral medulla. Auton Neurosci. 2010. 155:14–18.
Article
4. Dampney RAL, Fontes MAP, Hirooka Y, Horiuchi J, Potts PD, Tagawa T. Role of angiotensin II receptors in the regulation of vasomotor neurons in the ventrolateral medulla. Clin Exp Pharmacol Physiol. 2002. 29:467–472.
Article
5. Dampney RAL, Tan PSP, Sheriff MJ, Fontes MAP, Horiuchi J. Cardiovascular effects of angiotensin II in the rostral ventrolateral medulla: the push-pull hypothesis. Curr Hypertens Rep. 2007. 9:222–227.
Article
6. Eng R, Miselis RR. Polydipsia and abolition of angiotensin-induced drinking after transections of subfornical organ efferent projections in the rat. Brain Res. 1981. 225:200–206.
Article
7. Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006. 7:335–346.
Article
8. Ito S, Gordon FJ, Sved AF. Dietary salt intake alters cardiovascular responses evoked from the rostral ventrolateral medulla. Am J Physiol. 1999. 276:R1600–R1607.
9. Ito S, Komatsu K, Tsukamoto K, Kanmatsuse K, Sved AF. Ventrolateral medulla AT1 receptors support blood pressure in hypertensive rats. Hypertension. 2002. 40:552–559.
Article
10. Lavoie JL, Cassell MD, Gross KW, Sigmund CD. Adjacent expression of renin and angiotensinogen in the rostral ventrolateral medulla using a dual-reporter transgenic model. Hypertension. 2004. 43:1116–1119.
Article
11. McKinley MJ, Albiston AL, Allen AM, Mathai ML, May CN, McAllen RM, Oldfield BJ, Mendelsohn FAO, Chai SY. The brain renin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol. 2003. 35:901–918.
Article
12. Nunes FC, Ribeiro TP, França-Silva MS, Medeiros IA, Braga VA. Superoxide scavenging in the rostral ventrolateral medulla blunts the pressor response to peripheral chemoreflex activation. Brain Res. 2010. 1351:141–149.
Article
13. Sakai K, Agassandian K, Morimoto S, Sinnayah P, Cassell MD, Davisson RL, Sigmund CD. Local production of angiotensin II in the subfornical organ causes elevated drinking. J Clin Invest. 2007. 117:1088–1095.
Article
14. Zimmerman MC, Lazartigues E, Sharma RV, Davisson RL. Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res. 2004. 95:210–216.
Article
Full Text Links
  • JVS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr