J Korean Med Sci.  2023 Dec;38(48):e355. 10.3346/jkms.2023.38.e355.

Prevalence and Clinical Characteristics of Mitochondrial DNA Mutations in Korean Patients With Sensorineural Hearing Loss

Affiliations
  • 1Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
  • 2Won-Sang Lee Institute for Hearing Loss, Seoul, Korea
  • 3Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea

Abstract

Background
Mutations in mitochondrial DNA (mtDNA) are associated with several genetic disorders, including sensorineural hearing loss. However, the prevalence of mtDNA mutations in a large cohort of Korean patients with hearing loss has not yet been investigated. Thus, this study aimed to investigate the frequency of mtDNA mutations in a cohort of with pre- or post-lingual hearing loss of varying severity.
Methods
A total of 711 Korean families involving 1,099 individuals were evaluated. Six mitochondrial variants associated with deafness (MTRNR1 m.1555A>G, MTTL1 m.3243A>G, MTCO1 m.7444G>A and m.7445A>G, and MTTS1 m.7471dupC and m.7511T>C) were screened using restriction fragment length polymorphism. The prevalence of the six variants was also analyzed in a large control dataset using whole-genome sequencing data from 4,534 Korean individuals with unknown hearing phenotype.
Results
Overall, 12 of the 711 (1.7%) patients with hearing loss had mtDNA variants, with 10 patients from independent families positive for the MTRNR1 m.1555A>G mutation and 2 patients positive for the MTCO1 m.7444G>A mutation. The clinical characteristics of patients with the mtDNA variants were characterized by post-lingual progressive hearing loss due to the m.1555A>G variant (9 of 472; 1.9%). In addition, 18/4,534 (0.4%) of the Korean population have mitochondrial variants associated with hearing loss, predominantly the m.1555A>G variant.
Conclusion
A significant proportion of Korean patients with hearing loss is affected by the mtDNA variants, with the m.1555A>G variant being the most prevalent. These results clarify the genetic basis of hearing loss in the Korean population and emphasize the need for genetic testing for mtDNA variants.

Keyword

Mitochondrial DNA; Restriction Fragment Length Polymorphism; Sensorineural Hearing Loss

Figure

  • Fig. 1 Detection rate of pathogenic mtDNA variants in the YUHL cohort and pedigree information summarizing segregation analysis. (A) Detection rate of mtDNA mutations that cause deafness in the YUHL cohort. Among the 711 families screened for mtDNA mutations, 10 unrelated hearing loss patients with the m.1555A>G variant and 2 patients with the m.7444G>A variant are identified. (B) Detection rate of deafness-causing mtDNA mutations in a group of YUHL patients with moderate-to-profound post-lingual hearing loss. (C) Pedigree and segregation results of families carrying m.1555A>G variant. (D) Pedigree and segregation results of families with m.7444G>A variant. Individuals highlighted in red were those available for RFLP and Sanger sequencing. ‘+’ indicated individuals with the mtDNA variants.mtDNA = mitochondrial DNA, YUHL = Yonsei University Hearing Loss.

  • Fig. 2 Audiograms of m.1555A>G variant carriers. The transparent blue line depicts the individual thresholds, the average of the right and left ear (except for YUHL847-21 and 1054-21). The thresholds of the affected ear are indicated for YUHL847-21 and 1054-21. The black line represents the average of ten audiograms.YUHL = Yonsei University Hearing Loss.


Reference

1. Morton NE, Shields DC, Collins A. Genetic epidemiology of complex phenotypes. Ann Hum Genet. 1991; 55(4):301–314. PMID: 1819230.
Article
2. Yuan Y, You Y, Huang D, Cui J, Wang Y, Wang Q, et al. Comprehensive molecular etiology analysis of nonsyndromic hearing impairment from typical areas in China. J Transl Med. 2009; 7(1):79. PMID: 19744334.
Article
3. Morton NE. Genetic epidemiology of hearing impairment. Ann N Y Acad Sci. 1991; 630(1):16–31. PMID: 1952587.
Article
4. Jacobs HT, Hutchin TP, Käppi T, Gillies G, Minkkinen K, Walker J, et al. Mitochondrial DNA mutations in patients with postlingual, nonsyndromic hearing impairment. Eur J Hum Genet. 2005; 13(1):26–33. PMID: 15292920.
Article
5. Usami S, Abe S, Akita J, Namba A, Shinkawa H, Ishii M, et al. Prevalence of mitochondrial gene mutations among hearing impaired patients. J Med Genet. 2000; 37(1):38–40. PMID: 10633132.
Article
6. Li Z, Li R, Chen J, Liao Z, Zhu Y, Qian Y, et al. Mutational analysis of the mitochondrial 12S rRNA gene in Chinese pediatric subjects with aminoglycoside-induced and non-syndromic hearing loss. Hum Genet. 2005; 117(1):9–15. PMID: 15841390.
Article
7. Bae JW, Kim DB, Choi JY, Park HJ, Lee JD, Hur DG, et al. Molecular and clinical characterization of the variable phenotype in Korean families with hearing loss associated with the mitochondrial A1555G mutation. PLoS One. 2012; 7(8):e42463. PMID: 22879993.
Article
8. Fischel-Ghodsian N, Prezant TR, Chaltraw WE, Wendt KA, Nelson RA, Arnos KS, et al. Mitochondrial gene mutation is a significant predisposing factor in aminoglycoside ototoxicity. Am J Otolaryngol. 1997; 18(3):173–178. PMID: 9164619.
Article
9. Estivill X, Govea N, Barceló E, Badenas C, Romero E, Moral L, et al. Familial progressive sensorineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment of aminoglycosides. Am J Hum Genet. 1998; 62(1):27–35. PMID: 9490575.
Article
10. Casano RA, Bykhovskaya Y, Johnson DF, Hamon M, Torricelli F, Bigozzi M, et al. Hearing loss due to the mitochondrial A1555G mutation in Italian families. Am J Med Genet. 1998; 79(5):388–391. PMID: 9779807.
Article
11. Manouvrier S, Rötig A, Hannebique G, Gheerbrandt JD, Royer-Legrain G, Munnich A, et al. Point mutation of the mitochondrial tRNA(Leu) gene (A 3243 G) in maternally inherited hypertrophic cardiomyopathy, diabetes mellitus, renal failure, and sensorineural deafness. J Med Genet. 1995; 32(8):654–656. PMID: 7473662.
Article
12. Majamaa K, Moilanen JS, Uimonen S, Remes AM, Salmela PI, Kärppä M, et al. Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population. Am J Hum Genet. 1998; 63(2):447–454. PMID: 9683591.
Article
13. Martin L, Toutain A, Guillen C, Haftek M, Machet MC, Toledano C, et al. Inherited palmoplantar keratoderma and sensorineural deafness associated with A7445G point mutation in the mitochondrial genome. Br J Dermatol. 2000; 143(4):876–883. PMID: 11069477.
Article
14. Reid FM, Vernham GA, Jacobs HT. A novel mitochondrial point mutation in a maternal pedigree with sensorineural deafness. Hum Mutat. 1994; 3(3):243–247. PMID: 8019558.
Article
15. Yuan H, Qian Y, Xu Y, Cao J, Bai L, Shen W, et al. Cosegregation of the G7444A mutation in the mitochondrial COI/tRNASer(UCN) genes with the 12S rRNA A1555G mutation in a Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. Am J Med Genet A. 2005; 138A(2):133–140. PMID: 16152638.
Article
16. Pandya A, Xia XJ, Erdenetungalag R, Amendola M, Landa B, Radnaabazar J, et al. Heterogenous point mutations in the mitochondrial tRNA Ser(UCN) precursor coexisting with the A1555G mutation in deaf students from Mongolia. Am J Hum Genet. 1999; 65(6):1803–1806. PMID: 10577941.
Article
17. Friedman RA, Bykhovskaya Y, Sue CM, DiMauro S, Bradley R, Fallis-Cunningham R, et al. Maternally inherited nonsyndromic hearing loss. Am J Med Genet. 1999; 84(4):369–372. PMID: 10340654.
Article
18. Wong LC, Chen T, Wang J, Tang S, Schmitt ES, Landsverk M, et al. Interpretation of mitochondrial tRNA variants. Genet Med. 2020; 22(5):917–926. PMID: 31965079.
Article
19. Hutchin TP, Navarro-Coy NC, Van Camp G, Tiranti V, Zeviani M, Schuelke M, et al. Multiple origins of the mtDNA 7472insC mutation associated with hearing loss and neurological dysfunction. Eur J Hum Genet. 2001; 9(5):385–387. PMID: 11378827.
Article
20. Subathra M, Ramesh A, Selvakumari M, Karthikeyen NP, Srisailapathy CR. Genetic epidemiology of mitochondrial pathogenic variants causing nonsyndromic hearing loss in a large cohort of South Indian hearing impaired individuals. Ann Hum Genet. 2016; 80(5):257–273. PMID: 27530448.
Article
21. Brandon MC, Lott MT, Nguyen KC, Spolim S, Navathe SB, Baldi P, et al. MITOMAP: a human mitochondrial genome database--2004 update. Nucleic Acids Res. 2005; 33(Database issue):D611–D613. PMID: 15608272.
Article
22. Kokotas H, Grigoriadou M, Korres GS, Ferekidou E, Kandiloros D, Korres S, et al. Detection of deafness-causing mutations in the Greek mitochondrial genome. Dis Markers. 2011; 30(6):283–289. PMID: 21725156.
Article
23. Lee HY, Yoo JE, Park MJ, Chung U, Shin KJ. Mitochondrial DNA control region sequences in Koreans: identification of useful variable sites and phylogenetic analysis for mtDNA data quality control. Int J Legal Med. 2006; 120(1):5–14. PMID: 16177905.
Article
24. Weissensteiner H, Pacher D, Kloss-Brandstätter A, Forer L, Specht G, Bandelt HJ, et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 2016; 44(W1):W58–W63. PMID: 27084951.
Article
25. Van Camp G, Willems PJ, Smith RJ. Nonsyndromic hearing impairment: unparalleled heterogeneity. Am J Hum Genet. 1997; 60(4):758–764. PMID: 9106521.
26. Estivill X, Fortina P, Surrey S, Rabionet R, Melchionda S, D’Agruma L, et al. Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet. 1998; 351(9100):394–398. PMID: 9482292.
Article
27. Shin JW, Lee SC, Lee HK, Park HJ. Genetic screening of GJB2 and SLC26A4 in Korean cochlear implantees: experience of soree ear clinic. Clin Exp Otorhinolaryngol. 2012; 5:Suppl 1. (Suppl 1):S10–S13. PMID: 22701767.
28. Subathra M, Selvakumari M, Ramesh A, Ramakrishnan R, Karan KR, Kaur M, et al. Complete mitochondrial genome analysis and clinical documentation of a five-generational Indian family with mitochondrial 1555A>G mutation and postlingual hearing loss. Ann Hum Genet. 2014; 78(3):217–234. PMID: 24660976.
Article
29. Ding Y, Li Y, You J, Yang L, Chen B, Lu J, et al. Mitochondrial tRNAGlu A14693G variant may modulate the phenotypic manifestation of deafness-associated 12S rRNA A1555G mutation in a Han Chinese family. J Genet Genomics. 2009; 36(4):241–250. PMID: 19376484.
Article
30. del Castillo FJ, Rodríguez-Ballesteros M, Martín Y, Arellano B, Gallo-Terán J, Morales-Angulo C, et al. Heteroplasmy for the 1555A>G mutation in the mitochondrial 12S rRNA gene in six Spanish families with non-syndromic hearing loss. J Med Genet. 2003; 40(8):632–636. PMID: 12920080.
Article
31. Rydzanicz M, Cywińska K, Wróbel M, Pollak A, Gawęcki W, Wojsyk-Banaszak I, et al. The contribution of the mitochondrial COI/tRNASer(UCN) gene mutations to non-syndromic and aminoglycoside-induced hearing loss in Polish patients. Mol Genet Metab. 2011; 104(1-2):153–159. PMID: 21621438.
Article
32. Meng F, Cang X, Peng Y, Li R, Zhang Z, Li F, et al. Biochemical evidence for a nuclear modifier allele (A10S) in TRMU (methylaminomethyl-2-thiouridylate-methyltransferase) related to mitochondrial tRNA modification in the phenotypic manifestation of deafness-associated 12S rRNA mutation. J Biol Chem. 2017; 292(7):2881–2892. PMID: 28049726.
Article
33. Guan MX, Yan Q, Li X, Bykhovskaya Y, Gallo-Teran J, Hajek P, et al. Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12S ribosomal RNA mutations. Am J Hum Genet. 2006; 79(2):291–302. PMID: 16826519.
Article
34. Chen B, Sun D, Yang L, Zhang C, Yang A, Zhu Y, et al. Mitochondrial ND5 T12338C, tRNACys T5802C, and tRNAThr G15927A variants may have a modifying role in the phenotypic manifestation of deafness-associated 12S rRNA A1555G mutation in three Han Chinese pedigrees. Am J Med Genet A. 2008; 146A(10):1248–1258. PMID: 18386806.
Article
35. Zhao L, Wang Q, Qian Y, Li R, Cao J, Hart LC, et al. Clinical evaluation and mitochondrial DNA sequence analysis in two Chinese families with aminoglycoside-induced and non-syndromic hearing loss. Biochem Biophys Res Commun. 2005; 336(3):967–973. PMID: 16168391.
Article
36. Young WY, Zhao L, Qian Y, Li R, Chen J, Yuan H, et al. Variants in mitochondrial tRNAGlu, tRNAArg, and tRNAThr may influence the phenotypic manifestation of deafness-associated 12S rRNA A1555G mutation in three Han Chinese families with hearing loss. Am J Med Genet A. 2006; 140(20):2188–2197. PMID: 16955413.
37. Rishishwar L, Jordan IK. Implications of human evolution and admixture for mitochondrial replacement therapy. BMC Genomics. 2017; 18(1):140. PMID: 28178941.
Article
38. Yelverton JC, Arnos K, Xia XJ, Nance WE, Pandya A, Dodson KM. The clinical and audiologic features of hearing loss due to mitochondrial mutations. Otolaryngol Head Neck Surg. 2013; 148(6):1017–1022. PMID: 23525847.
Article
39. Lu J, Qian Y, Li Z, Yang A, Zhu Y, Li R, et al. Mitochondrial haplotypes may modulate the phenotypic manifestation of the deafness-associated 12S rRNA 1555A>G mutation. Mitochondrion. 2010; 10(1):69–81. PMID: 19818876.
Article
40. Bykhovskaya Y, Shohat M, Ehrenman K, Johnson D, Hamon M, Cantor RM, et al. Evidence for complex nuclear inheritance in a pedigree with nonsyndromic deafness due to a homoplasmic mitochondrial mutation. Am J Med Genet. 1998; 77(5):421–426. PMID: 9632174.
Article
41. Wei QP, Zhou X, Yang L, Sun YH, Zhou J, Li G, et al. The coexistence of mitochondrial ND6 T14484C and 12S rRNA A1555G mutations in a Chinese family with Leber’s hereditary optic neuropathy and hearing loss. Biochem Biophys Res Commun. 2007; 357(4):910–916. PMID: 17452034.
Article
42. Mezghani N, Mnif M, Mkaouar-Rebai E, Kallel N, Charfi N, Abid M, et al. A maternally inherited diabetes and deafness patient with the 12S rRNA m.1555A>G and the ND1 m.3308T>C mutations associated with multiple mitochondrial deletions. Biochem Biophys Res Commun. 2013; 431(4):670–674. PMID: 23357420.
Article
43. Guan MX, Enriquez JA, Fischel-Ghodsian N, Puranam RS, Lin CP, Maw MA, et al. The deafness-associated mitochondrial DNA mutation at position 7445, which affects tRNASer(UCN) precursor processing, has long-range effects on NADH dehydrogenase subunit ND6 gene expression. Mol Cell Biol. 1998; 18(10):5868–5879. PMID: 9742104.
Article
44. Li X, Zhang LS, Fischel-Ghodsian N, Guan MX. Biochemical characterization of the deafness-associated mitochondrial tRNASer(UCN) A7445G mutation in osteosarcoma cell cybrids. Biochem Biophys Res Commun. 2005; 328(2):491–498. PMID: 15694374.
Article
45. Kumana CR, Yuen KY. Parenteral aminoglycoside therapy. Selection, administration and monitoring. Drugs. 1994; 47(6):902–913. PMID: 7521830.
46. Driessen RG, Groven RV, van Koll J, Oudhuis GJ, Posthouwer D, van der Horst IC, et al. Appropriateness of empirical antibiotic therapy and added value of adjunctive gentamicin in patients with septic shock: a prospective cohort study in the ICU. Infect Dis (Lond). 2021; 53(11):830–838. PMID: 34156899.
Article
47. Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F, et al. 2015 ESC guidelines for the management of infective endocarditis: the task force for the management of infective endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015; 36(44):3075–3128. PMID: 26320109.
Article
48. World Health Organization. WHO Consolidated Guidelines on Tuberculosis: Module 4: Treatment - Drug-Resistant Tuberculosis Treatment, 2022 Update. Geneva, Switzerland: World Health Organization;2022.
49. Wargo KA, Edwards JD. Aminoglycoside-induced nephrotoxicity. J Pharm Pract. 2014; 27(6):573–577. PMID: 25199523.
Article
50. Le TA, Hiba T, Chaudhari D, Preston AN, Palowsky ZR, Ahmadzadeh S, et al. Aminoglycoside-related nephrotoxicity and ototoxicity in clinical practice: a review of pathophysiological mechanism and treatment options. Adv Ther. 2023; 40(4):1357–1365. PMID: 36738370.
Article
Full Text Links
  • JKMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr