Clin Exp Otorhinolaryngol.  2023 Aug;16(3):236-243. 10.21053/ceo.2023.00129.

Use of Skull Vibration-Induced Nystagmus in the Follow-up of Patients With Ménière Disease Treated With Intratympanic Gentamicin

Affiliations
  • 1Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Salamanca, Salamanca, Spain

Abstract


Objectives
. Ménière disease (MD) is an idiopathic disorder that affects hearing and inner ear balance. Intratympanic gentamicin (ITG) is recognized as an effective treatment for uncontrolled MD characterized by persistent vertigo attacks despite therapy. The video head impulse test (vHIT) and skull vibration-induced nystagmus (SVIN) are validated methods for evaluating vestibular function. A progressive linear relationship has been identified between the slow-phase velocity (SPV) of SVIN determined using a 100-Hz skull vibrator and the gain difference (healthy ear/affected ear) measured by vHIT. The aim of this study was to ascertain whether the SPV of SVIN was associated with the recovery of vestibular function following ITG treatment. Consequently, we sought to determine whether SVIN could predict the onset of new vertigo attacks in patients with MD who were treated with ITG.
Methods
. A prospective longitudinal case-control study was conducted. Several variables were recorded post-ITG and throughout the follow-up period, followed by statistical analyses. Two groups were compared: patients who experienced vertigo attacks 6 months after ITG and those who did not.
Results
. The sample comprised 88 patients diagnosed with MD who underwent ITG treatment. Of the 18 patients who experienced recurring vertigo attacks, 15 demonstrated gain recovery in the affected ear. However, all 18 patients exhibited a decrease in the SPV of SVIN.
Conclusion
. The SPV of SVIN may be more sensitive than vHIT in identifying the recovery of vestibular function following ITG administration. To our knowledge, this is the first study to illustrate the link between a reduction in SPV and the likelihood of vertigo episodes in patients with MD who have been treated with ITG.

Keyword

Pathologic Nystagmus; Vestibular Disease; Meniere Disease; Gentamicin; Head Impulse Test

Figure

  • Fig. 1. Box and whisker plots. In the group that did not experience vertigo attacks after intratympanic gentamicin (“no”, group B), no change was noted in the gain on the affected side over time (A), nor was any change observed in the slow-phase velocity (SPV) (B). The SPV modification percentage remained close to 0% (C). Conversely, among those who did experience subsequent attacks (“yes”, group A, blue), the SPV decreased by 37% (C), the gain on the affected side recovered (A), and the SPV also decreased (B). For all patients in group A, the gain difference decreased because the gain on the affected side recovered in every case. The SPV also decreased in all patients in group A. VIN, vibration-induced nystagmus.

  • Fig. 2. Linear regression model. The blue dots denote patients who experienced vertigo attacks following intratympanic gentamicin (ITG) (“yes”, group A), while the green dots represent those who did not (“no”, group B). (A) As the gain in the affected ear increases, the slow-phase velocity (SPV) decreases (as evidenced by the predominance of blue dots in the lower right quadrant). This demonstrates a correlation between the SPV of the diseased side and the gain on that same side during follow-up (post-ITG). The Pearson correlation coefficient was 0.6, with a P-value of 0.000. (B) In the blue group, as the gain in the diseased ear recovered and the disparity in gains between both ears diminished, the SPV exhibited a greater percentage of change. In other words, it slowed down compared to the pre-crisis SPV. However, in the green group, the SPV remained unchanged. The Pearson correlation coefficient was 0.7, with a P-value of 0.000. VIN, vibration-induced nystagmus.


Reference

1. Wright T. Meniere’s disease. BMJ Clin Evid. 2015; Nov. 2015:0505.
2. Tyrrell JS, Whinney DJ, Ukoumunne OC, Fleming LE, Osborne NJ. Prevalence, associated factors, and comorbid conditions for Meniere’s disease. Ear Hear. 2014; Jul-Aug. 35(4):e162–9.
3. Huang CH, Young YH. Bilateral Meniere’s disease assessed by an inner ear test battery. Acta Otolaryngol. 2015; Mar. 135(3):233–8.
4. Pullens B, van Benthem PP. Intratympanic gentamicin for Meniere’s disease or syndrome. Cochrane Database Syst Rev. 2011; Mar. (3):CD008234.
5. Junet P, Karkas A, Dumas G, Quesada JL, Schmerber S. Vestibular results after intratympanic gentamicin therapy in disabling Meniere’s disease. Eur Arch Otorhinolaryngol. 2016; Oct. 273(10):3011–8.
6. Anagnostou E, Koutsoudaki P, Stavropoulos A, Evdokimidis I. Effect of common antivertiginous agents on the high velocity vestibulo-ocular reflex. Clin Neurophysiol. 2017; Nov. 128(11):2211–6.
7. Lyford-Pike S, Vogelheim C, Chu E, Della Santina CC, Carey JP. Gentamicin is primarily localized in vestibular type I hair cells after intratympanic administration. J Assoc Res Otolaryngol. 2007; Dec. 8(4):497–508.
8. Cordero-Yanza JA, Arrieta Vazquez EV, Hernaiz Leonardo JC, Mancera Sanchez J, Hernandez Palestina MS, Perez-Fernandez N. Comparative study between the caloric vestibular and the video-head impulse tests in unilateral Meniere’s disease. Acta Otolaryngol. 2017; Nov. 137(11):1178–82.
9. Marques PS, Dias CC, Perez-Fernandez N, Spratley J. Instrumental head impulse test changes after intratympanic gentamicin for unilateral definite Meniere’s disease: a systematic review and meta-analysis. Auris Nasus Larynx. 2018; Oct. 45(5):943–51.
10. Lee JY, Kim MB. Change of VOR gain and pure-tone threshold after single low-dose intratympanic gentamicin injection in Meniere’s disease. Acta Otolaryngol. 2020; Apr. 140(4):314–8.
11. Martin-Sanz E, Diaz JY, Esteban-Sanchez J, Sanz-Fernandez R, Perez-Fernandez N. Delayed effect and gain restoration after intratympanic gentamicin for Meniere’s disease. Otol Neurotol. 2019; Jan. 40(1):79–87.
12. Rey-Martinez J, Batuecas-Caletrio A, Matino E, Perez Fernandez N. HITCal: a software tool for analysis of video head impulse test responses. Acta Otolaryngol. 2015; Sep. 135(9):886–94.
13. Dumas G, Curthoys IS, Lion A, Perrin P, Schmerber S. The skull vibration-induced nystagmus test of vestibular function: a review. Front Neurol. 2017; Mar. 8:41.
14. Sanchez-Blanco C, Yanez-Gonzalez R, Batuecas-Caletrio A. Nistagmo inducido por vibración en Otorrinolaringología. Rev ORL. 2018; 9(3):221–6.
15. Batuecas-Caletrio A, Martinez-Carranza R, Garcia Nunez GM, Fernandez Nava MJ, Sanchez Gomez H, Santacruz Ruiz S, et al. Skull vibration-induced nystagmus in vestibular neuritis. Acta Otolaryngol. 2020; Dec. 140(12):995–1000.
16. Lopez-Escamez JA, Carey J, Chung WH, Goebel JA, Magnusson M, Mandala M, et al. Diagnostic criteria for Meniere’s disease according to the Classification Committee of the Barany Society. HNO. 2017; Nov. 65(11):887–93.
17. Villaoslada-Fuentes C, Fernandez-Nava MJ, Ferreira-Cendon S, Villaoslada-Fuentes R, Sanchez-Gomez H, Batuecas-Caletrio A. Pérdida de audición tras gentamicina intratimpánica en la Enfermedad de Ménière. Estudio retrospectivo. Rev ORL. 2021; Jul/Sep. 12(3):243–52.
18. Diamond C, O’Connell DA, Hornig JD, Liu R. Systematic review of intratympanic gentamicin in Meniere’s disease. J Otolaryngol. 2003; Dec. 32(6):351–61.
19. Forge A, Schacht J. Aminoglycoside antibiotics. Audiol Neurootol. 2000; Jan-Feb. 5(1):3–22.
20. Dumas G, Perrin P, Ouedraogo E, Schmerber S. How to perform the skull vibration-induced nystagmus test (SVINT). Eur Ann Otorhinolaryngol Head Neck Dis. 2016; Nov. 133(5):343–8.
21. Halmagyi GM, Chen L, MacDougall HG, Weber KP, McGarvie LA, Curthoys IS. The video head impulse test. Front Neurol. 2017; Jun. 8:258.
22. Trinidad-Ruiz G, Rey-Martinez J, Matino-Soler E, Batuecas-Caletrio A, Martin-Sanz E, Perez-Fernandez N. Relevance of artifact removal and number of stimuli for video head impulse test examination. Ear Hear. 2020; Sep/Oct. 41(5):1397–406.
23. Mantokoudis G, Saber Tehrani AS, Kattah JC, Eibenberger K, Guede CI, Zee DS, et al. Quantifying the vestibulo-ocular reflex with videooculography: nature and frequency of artifacts. Audiol Neurootol. 2015; 20(1):39–50.
24. Batuecas-Caletrio A, Rey-Martinez J, Trinidad-Ruiz G, Matino-Soler E, Cruz-Ruiz SS, Munoz-Herrera A, et al. Vestibulo-ocular reflex stabilization after vestibular Schwannoma surgery: a story told by Saccades. Front Neurol. 2017; Jan. 8:15.
25. Curthoys IS. Generation of the quick phase of horizontal vestibular nystagmus. Exp Brain Res. 2002; Apr. 143(4):397–405.
26. Curthoys IS. The neural basis of skull vibration induced nystagmus (SVIN). Audiol Res. 2021; Oct. 11(4):557–66.
27. Cohen B, Suzuki JI, Bender MB. Eye movements from semicircular canal nerve stimulation in the cat. Ann Otol Rhinol Laryngol. 1964; Mar. 73:153–69.
28. Fernandez C, Goldberg JM, Baird RA. The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula. J Neurophysiol. 1990; Apr. 63(4):767–80.
29. Qian X, He Z, Wang Y, Chen B, Hetrick A, Dai C, et al. Hair cell uptake of gentamicin in the developing mouse utricle. J Cell Physiol. 2021; Jul. 236(7):5235–52.
30. Dumas G, Perrin P, Schmerber S. Nystagmus induced by high frequency vibrations of the skull in total unilateral peripheral vestibular lesions. Acta Otolaryngol. 2008; Mar. 128(3):255–62.
31. Miller MW, Agrawal Y. Intratympanic Therapies for Meniere’s disease. Curr Otorhinolaryngol Rep. 2014; Sep. 2(3):137–43.
32. Cotanche DA, Lee KH. Regeneration of hair cells in the vestibulocochlear system of birds and mammals. Curr Opin Neurobiol. 1994; Aug. 4(4):509–14.
33. Bremer HG, Versnel H, Hendriksen FG, Topsakal V, Grolman W, Klis SF. Does vestibular end-organ function recover after gentamicin-induced trauma in Guinea pigs. Audiol Neurootol. 2014; 19(2):135–50.
34. McInturff S, Burns JC, Kelley MW. Characterization of spatial and temporal development of Type I and Type II hair cells in the mouse utricle using new cell-type-specific markers. Biol Open. 2018; Nov. 7(11):bio038083.
35. Marcotti W, van Netten SM, Kros CJ. The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol. 2005; Sep. 567(Pt 2):505–21.
36. Hashino E, Shero M, Salvi RJ. Lysosomal augmentation during aminoglycoside uptake in cochlear hair cells. Brain Res. 2000; Dec. 887(1):90–7.
37. Denk W, Holt JR, Shepherd GM, Corey DP. Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron. 1995; Dec. 15(6):1311–21.
38. Chen JW, Eatock RA. Major potassium conductance in type I hair cells from rat semicircular canals: characterization and modulation by nitric oxide. J Neurophysiol. 2000; Jul. 84(1):139–51.
39. Desai SS, Zeh C, Lysakowski A. Comparative morphology of rodent vestibular periphery. I. Saccular and utricular maculae. J Neurophysiol. 2005; Jan. 93(1):251–66.
40. Hirvonen TP, Minor LB, Hullar TE, Carey JP. Effects of intratympanic gentamicin on vestibular afferents and hair cells in the chinchilla. J Neurophysiol. 2005; Feb. 93(2):643–55.
Full Text Links
  • CEO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr