Diabetes Metab J.  2022 Nov;46(6):936-940. 10.4093/dmj.2021.0293.

Comparison of Laser and Conventional Lancing Devices for Blood Glucose Measurement Conformance and Patient Satisfaction in Diabetes Mellitus

Affiliations
  • 1Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
  • 2Division of Endocrinology and Metabolism, Department of Internal Medicine, Daejin Medical Center, Bundang Jesaeng Hospital, Seongnam, Korea
  • 3Research Institute for Skin Imaging, Korea University College of Medicine, Seoul, Korea
  • 5BK21 FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Korea

Abstract

Self-monitoring of capillary blood glucose is important for controlling diabetes. Recently, a laser lancing device (LMT-1000) that can collect capillary blood without skin puncture was developed. We enrolled 150 patients with type 1 or 2 diabetes mellitus. Blood sampling was performed on the same finger on each hand using the LMT-1000 or a conventional lancet. The primary outcome was correlation between glucose values using the LMT-1000 and that using a lancet. And we compared the pain and satisfaction of the procedures. The capillary blood sampling success rates with the LMT-1000 and lancet were 99.3% and 100%, respectively. There was a positive correlation (r=0.974, P<0.001) between mean blood glucose levels in the LMT-1000 (175.8±63.0 mg/dL) and conventional lancet samples (172.5±63.6 mg/dL). LMT-1000 reduced puncture pain by 75.0% and increased satisfaction by 80.0% compared to a lancet. We demonstrated considerable consistency in blood glucose measurements between samples from the LMT-1000 and a lancet, but improved satisfaction and clinically significant pain reduction were observed with the LMT-1000 compared to those with a lancet.

Keyword

Blood glucose self-monitoring; Diabetes mellitus; Lasers; Pain

Figure

  • Fig. 1. Correlation of glucose concentration of LMT-1000 samples with that of lancet samples. (A) Passing-Bablok analysis. (B, C, D) Bland-Altman’s plot of the difference in glucose level between LMT-1000 and lancet samples against the average of two capillary glucose values: (B) total, (C) glycosylated hemoglobin (HbA1c) <7%, and (D) HbA1c ≥7%. The mean difference (solid line) and limits of agreement (mean±2 standard deviations [SDs], dotted line) are shown. (E) Clarke error grid analysis for evaluation of clinical implications of capillary blood glucose values of LMT-1000 or lancet samples. Zone A: no effect on clinical action; zone B: altered clinical action, little or no effect on the clinical outcome; zone C: altered clinical action, likely to affect the clinical outcome; zone D: altered clinical action, could have significant medical risk; and zone E: altered clinical action, could have dangerous consequences.


Reference

1. American Diabetes Association. 6. Glycemic targets: standards of medical care in diabetes-2021. Diabetes Care. 2021; 44(Suppl 1):S73–84.
2. Gao L, Ji L, Su Q, Feng B, Shan Z, Hu R, et al. Impact of structured self-monitoring of blood glucose on the quality of life of insulin-treated Chinese patients with type 2 diabetes mellitus: results from the COMPASS study. Diabetes Res Clin Pract. 2016; 112:88–93.
Article
3. Polonsky WH, Fisher L, Schikman CH, Hinnen DA, Parkin CG, Jelsovsky Z, et al. Structured self-monitoring of blood glucose significantly reduces A1C levels in poorly controlled, noninsulin-treated type 2 diabetes: results from the Structured Testing Program study. Diabetes Care. 2011; 34:262–7.
4. Mannucci E, Antenore A, Giorgino F, Scavini M. Effects of structured versus unstructured self-monitoring of blood glucose on glucose control in patients with non-insulin-treated type 2 diabetes: a meta-analysis of randomized controlled trials. J Diabetes Sci Technol. 2018; 12:183–9.
Article
5. Burge MR. Lack of compliance with home blood glucose monitoring predicts hospitalization in diabetes. Diabetes Care. 2001; 24:1502–3.
Article
6. Ong WM, Chua SS, Ng CJ. Barriers and facilitators to selfmonitoring of blood glucose in people with type 2 diabetes using insulin: a qualitative study. Patient Prefer Adherence. 2014; 8:237–46.
7. Yoo WS, Min J, Chung PS, Woo SH. Biochemical and pain comparisons between the laser lancing device and needle lancets for capillary blood sampling: a randomized control trial. Lasers Surg Med. 2021; 53:316–23.
Article
8. Haefeli M, Elfering A. Pain assessment. Eur Spine J. 2006; 15 Suppl 1:S17–24.
Article
9. Voutilainen A, Pitkaaho T, Kvist T, Vehvilainen-Julkunen K. How to ask about patient satisfaction?: the visual analogue scale is less vulnerable to confounding factors and ceiling effect than a symmetric Likert scale. J Adv Nurs. 2016; 72:946–57.
Article
10. Parkes JL, Slatin SL, Pardo S, Ginsberg BH. A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care. 2000; 23:1143–8.
Article
11. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000; 321:405–12.
Article
12. Ziegler R, Heidtmann B, Hilgard D, Hofer S, Rosenbauer J, Holl R, et al. Frequency of SMBG correlates with HbA1c and acute complications in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2011; 12:11–7.
Article
13. Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulindependent diabetes mellitus. N Engl J Med. 1993; 329:977–86.
Article
14. Fu AZ, Qiu Y, Radican L. Impact of fear of insulin or fear of injection on treatment outcomes of patients with diabetes. Curr Med Res Opin. 2009; 25:1413–20.
Article
15. Fonseca V, Hinson J, Pappas A, Waner M, Flock S. An erbium:YAG laser to obtain capillary blood samples without a needle for point-of-care laboratory testing. Arch Pathol Lab Med. 1997; 121:685–8.
16. Barkana Y, Belkin M. Laser eye injuries. Surv Ophthalmol. 2000; 44:459–78.
Article
Full Text Links
  • DMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr