J Vet Sci.  2017 Aug;18(S1):281-290. 10.4142/jvs.2017.18.S1.281.

Development and trial of vaccines against Brucella

Affiliations
  • 1College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea. johnhlee@jbnu.ac.kr

Abstract

The search for ideal brucellosis vaccines remains active today. Currently, no licensed human or canine anti-brucellosis vaccines are available. In bovines, the most successful vaccine (S19) is only used in calves, as adult vaccination results in orchitis in male, prolonged infection, and possible abortion complications in pregnant female cattle. Another widely deployed vaccine (RB51) has a low protective efficacy. An ideal vaccine should exhibit a safe profile as well as enhance protective efficacy. However, currently available vaccines exhibit one or more major drawbacks. Smooth live attenuated vaccines suffer shortcomings such as residual virulence and serodiagnostic interference. Inactivated vaccines, in general, confer relatively low levels of protection. Recent developments to improve brucellosis vaccines include generation of knockout mutants by targeting genes involved in metabolism, virulence, and the lipopolysaccharide synthesis pathway, as well as generation of DNA vaccines, mucosal vaccines, and live vectored vaccines, have all produced varying degrees of success. Herein, we briefly review the bacteriology, pathogenesis, immunological implications, candidate vaccines, vaccinations, and models related to Brucella.

Keyword

Brucella; animal models; brucellosis; vaccines

MeSH Terms

Animals
Brucella/genetics/*immunology
Brucella Vaccine/immunology/*therapeutic use
Brucellosis/immunology/*prevention & control
Cattle
Female
Humans
Male
Vaccines, Inactivated/immunology/therapeutic use
Brucella Vaccine
Vaccines, Inactivated

Reference

1. Alcantara RB, Read RD, Valderas MW, Brown TD, Roop RM 2nd. Intact purine biosynthesis pathways are required for wild-type virulence of Brucella abortus 2308 in the BALB/c mouse model. Infect Immun. 2004; 72:4911–4917.
Article
2. Al-Mariri A, Tibor A, Mertens P, De Bolle X, Michel P, Godefroid J, Walravens K, Letesson JJ. Protection of BALB/c mice against Brucella abortus 544 challenge by vaccination with bacterioferritin or P39 recombinant proteins with CpG oligodeoxynucleotides as adjuvant. Infect Immun. 2001; 69:4816–4822.
Article
3. Almirón M, Martínez M, Sanjuan N, Ugalde RA. Ferrochelatase is present in Brucella abortus and is critical for its intracellular survival and virulence. Infect Immun. 2001; 69:6225–6230.
Article
4. Alton GG, Jones LM, Angus RD, Verger JM. Techniques for the brucellosis laboratory. Paris: Institut National de la Recherche Agronomique;1988.
5. Anderson TD, Cheville NF. Ultrastructural morphometric analysis of Brucella abortus-infected trophoblasts in experimental placentitis. Bacterial replication occurs in rough endoplasmic reticulum. Am J Pathol. 1986; 124:226–237.
6. APPMG (All-Party Parliamentary Group on Malaria and Neglected Tropical Diseases). The Neglected Tropical Diseases: A Challenge We Could Rise to -- Will We? Geneva: World Health Organization;2009.
7. Arenas-Gamboa AM, Ficht TA, Kahl-McDonagh MM, Rice-Ficht AC. Immunization with a single dose of a microencapsulated Brucella melitensis mutant enhances protection against wild-type challenge. Infect Immun. 2008; 76:2448–2455.
Article
8. Arenas-Gamboa AM, Rice-Ficht AC, Kahl-McDonagh MM, Ficht TA. Protective efficacy and safety of Brucella melitensis 16MΔmucR against intraperitoneal and aerosol challenge in BALB/c mice. Infect Immun. 2011; 79:3653–3658.
Article
9. Barquero-Calvo E, Chaves-Olarte E, Weiss DS, Guzmán-Verri C, Chacón-Díaz C, Rucavado A, Moriyón I, Moreno E. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One. 2007; 2:e631.
10. Blasco JM, Gamazo C, Winter AJ, Jiménez de Bagüés MP, Marín C, Barberán M, Moriyón I, Alonso-Urmeneta B, Díaz R. Evaluation of whole cell and subcellular vaccines against Brucella ovis in rams. Vet Immunol Immunopathol. 1993; 37:257–270.
Article
11. Brandão AP, Oliveira FS, Carvalho NB, Vieira LQ, Azevedo V, Macedo GC, Oliveira SC. Host susceptibility to Brucella abortus infection is more pronounced in IFN-γ knockout than IL-12/β2-microglobulin double-deficient mice. Clin Dev Immunol. 2012; 2012:589494.
12. Braude AI. Studies in the pathology and pathogenesis of experimental brucellosis. II. The formation of the hepatic granuloma and its evolution. J Infect Dis. 1951; 89:87–94.
Article
13. Braude AI, Spink WW. Studies in the pathology and pathogenesis of experimental brucellosis. III. Investigations pertaining to the function of the spleen. J Infect Dis. 1951; 89:272–276.
Article
14. Bruce D. Note on the discovery of a microorganism in Malta fever. Practitioner. 1887; 39:161–170.
15. Buddingh GJ, Womack FC Jr. Observations on the infection of chick embryos with Bacterium tularense, Brucella, and Pasteurella pestis. J Exp Med. 1941; 74:213–222.
Article
16. Bundle DR, Cherwonogrodzky JW, Gidney MA, Meikle PJ, Perry MB, Peters T. Definition of Brucella A and M epitopes by monoclonal typing reagents and synthetic oligosaccharides. Infect Immun. 1989; 57:2829–2836.
Article
17. Canning PC, Roth JA, Deyoe BL. Release of 5'-guanosine monophosphate and adenine by Brucella abortus and their role in the intracellular survival of the bacteria. J Infect Dis. 1986; 154:464–470.
Article
18. Cardoso PG, Macedo GC, Azevedo V, Oliveira SC. Brucella spp noncanonical LPS: structure, biosynthesis, and interaction with host immune system. Microb Cell Fact. 2006; 5:13.
19. Cassataro J, Velikovsky CA, de la Barrera S, Estein SM, Bruno L, Bowden R, Pasquevich KA, Fossati CA, Giambartolomei GH. A DNA vaccine coding for the Brucella outer membrane protein 31 confers protection against B. melitensis and B. ovis infection by eliciting a specific cytotoxic response. Infect Immun. 2005; 73:6537–6546.
Article
20. Celli J, de Chastellier C, Franchini DM, Pizarro-Cerda J, Moreno E, Gorvel JP. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med. 2003; 198:545–556.
Article
21. Cespedes S, Andrews E, Folch H, Oñate A. Identification and partial characterisation of a new protective antigen of Brucella abortus. J Med Microbiol. 2000; 49:165–170.
Article
22. Chain PS, Comerci DJ, Tolmasky ME, Larimer FW, Malfatti SA, Vergez LM, Aguero F, Land ML, Ugalde RA, Garcia E. Whole-genome analyses of speciation events in pathogenic Brucellae. Infect Immun. 2005; 73:8353–8361.
Article
23. Chaudhuri P, Singha H, Goswami TK, Jana C, Shukla G. DNA prime and protein boost immunization with combined SOD-L7/L12 antigen confers protection to mice against Brucella abortus 544 challenge. Adv Anim Vet Sci. 2013; 1:143–147.
24. Cheville NF, Olsen SC, Jensen AE, Stevens MG, Palmer MV, Florance AM. Effects of age at vaccination on efficacy of Brucella abortus strain RB51 to protect cattle against brucellosis. Am J Vet Res. 1996; 57:1153–1156.
25. Clausse M, Díaz AG, Ghersi G, Zylberman V, Cassataro J, Giambartolomei GH, Goldbaum FA, Estein SM. The vaccine candidate BLSOmp31 protects mice against Brucella canis infection. Vaccine. 2013; 31:6129–6135.
Article
26. Clausse M, Díaz AG, Ibañez AE, Cassataro J, Giambartolomei GH, Estein SM. Evaluation of the efficacy of outer membrane protein 31 vaccine formulations for protection against Brucella canis in BALB/c mice. Clin Vaccine Immunol. 2014; 21:1689–1694.
Article
27. Commander NJ, Spencer SA, Wren BW, MacMillan AP. The identification of two protective DNA vaccines from a panel of five plasmid constructs encoding Brucella melitensis 16M genes. Vaccine. 2007; 25:43–54.
Article
28. Corbel MJ. Brucellosis: an overview. Emerg Infect Dis. 1997; 3:213–221.
Article
29. Corbel MJ. Brucellosis in humans and animals. Geneva: World Health Organization;2006.
30. Crasta OR, Folkerts O, Fei Z, Mane SP, Evans C, Martino-Catt S, Bricker B, Yu G, Du L, Sobral BW. Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes. PLoS One. 2008; 3:e2193.
31. de Figueiredo P, Ficht TA, Rice-Ficht A, Rossetti CA, Adams LG. Pathogenesis and immunobiology of brucellosis: review of Brucella-host interactions. Am J Pathol. 2015; 185:1505–1517.
32. De Ley J, Mannheim W, Segers P, Lievens A, Denijn M, Vanhoucke M, Gillis M. Ribosomal ribonucleic acid cistron similarities and taxonomic neighborhood of Brucella and CDC group Vd. Int J Syst Bacteriol. 1987; 37:35–42.
Article
33. Delpino MV, Estein SM, Fossati CA, Baldi PC, Cassataro J. Vaccination with Brucella recombinant DnaK and SurA proteins induces protection against Brucella abortus infection in BALB/c mice. Vaccine. 2007; 25:6721–6729.
Article
34. den Hartigh AB, Sun YH, Sondervan D, Heuvelmans N, Reinders MO, Ficht TA, Tsolis RM. Differential requirements for VirB1 and VirB2 during Brucella abortus infection. Infect Immun. 2004; 72:5143–5149.
Article
35. Diaz R, Oyeledun MA. Studies of some biological activities of “brucella” endotoxin in normal and infected animals and the role of the hypersensitivity factor. Ann Sclavo. 1977; 19:117–130.
36. Dzata GK, Confer AW, Wyckoff JH 3rd. The effects of adjuvants on immune responses in cattle injected with a Brucella abortus soluble antigen. Vet Microbiol. 1991; 29:27–48.
Article
37. Fensterbank R. Brucellosis in cattle, sheep and goats: diagnosis, control and vaccination. Rev Sci Tech Off Int Epiz. 1986; 5:605–618.
38. Ferguson GP, Datta A, Baumgartner J, Roop RM 2nd, Carlson RW, Walker GC. Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proc Natl Acad Sci U S A. 2004; 101:5012–5017.
Article
39. Finlay BB, Falkow S. Common themes in microbial pathogenicity. Microbiol Rev. 1989; 53:210–230.
Article
40. Fridovich I. Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem. 1989; 264:7761–7764.
41. García-Carrillo C. Laboratory animal models for brucellosis studies. In : Nielsen K, Duncan , editors. Animal Brucellosis. Boca Raton: CRC Press;1990. p. 423–442.
42. Garin-Bastuji B, Blasco JM, Grayon M, Verger JM. Brucella melitensis infection in sheep: present and future. Vet Res. 1998; 29:255–274.
43. Goenka R, Guirnalda PD, Black SJ, Baldwin CL. B lymphocytes provide an infection niche for intracellular bacterium Brucella abortus. J Infect Dis. 2012; 206:91–98.
Article
44. Goenka R, Parent MA, Elzer PH, Baldwin CL. B cell-deficient mice display markedly enhanced resistance to the intracellular bacterium Brucella abortus. J Infect Dis. 2011; 203:1136–1146.
Article
45. González D, Grilló MJ, De Miguel MJ, Ali T, Arce-Gorvel V, Delrue RM, Conde-Alvarez R, Muñoz P, López-Goñi I, Iriarte M, Marín CM, Weintraub A, Widmalm G, Zygmunt M, Letesson JJ, Gorvel JP, Blasco JM, Moriyón I. Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export. PLoS One. 2008; 3:e2760.
46. Grilló MJ, Blasco JM, Gorvel JP, Moriyón I, Moreno E. What have we learned from brucellosis in the mouse model? Vet Res. 2012; 43:29.
Article
47. Guihot A, Bossi P, Bricaire F. [Bioterrorism with brucellosis]. Presse Med. 2004; 33:119–122. French.
48. Guo F, Zhang H, Chen C, Hu S, Wang Y, Qiao J, Ren Y, Zhang K, Wang Y, Du G. Autophagy favors Brucella melitensis survival in infected macrophages. Cell Mol Biol Lett. 2012; 17:249–257.
49. Halling SM, Peterson-Burch BD, Bricker BJ, Zuerner RL, Qing Z, Li LL, Kapur V, Alt DP, Olsen SC. Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J Bacteriol. 2005; 187:2715–2726.
Article
50. International Office of Epizootics. Bovine brucellosis. International Office of Epizootics. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals: Mammals, Birds and Bees. 7th ed. Paris: World Organisation for Animal Health (OIE);2009. p. 1–35.
51. Kaushik P, Singh DK, Kumar SV, Tiwari AK, Shukla G, Dayal S, Chaudhuri P. Protection of mice against Brucella abortus 544 challenge by vaccination with recombinant OMP28 adjuvanted with CpG oligonucleotides. Vet Res Commun. 2010; 34:119–132.
Article
52. Kim WK, Moon JY, Kim S, Hur J. Comparison between immunization routes of live attenuated Salmonella Typhimurium strains expressing BCSP31, Omp3b, and SOD of Brucella abortus in murine model. Front Microbiol. 2016; 7:550.
53. Kurar E, Splitter GA. Nucleic acid vaccination of Brucella abortus ribosomal L7/L12 gene elicits immune response. Vaccine. 1997; 15:1851–1857.
Article
54. Lalsiamthara J, Gogia N, Goswami TK, Singh RK, Chaudhuri P. Intermediate rough Brucella abortus S19Δper mutant is DIVA enable, safe to pregnant guinea pigs and confers protection to mice. Vaccine. 2015; 33:2577–2583.
Article
55. Lalsiamthara J, Lee JH. Brucella lipopolysaccharide reinforced Salmonella delivering Brucella immunogens protects mice against virulent challenge. Vet Microbiol. 2017; 205:84–91.
Article
56. Lapaque N, Moriyon I, Moreno E, Gorvel JP. Brucella lipopolysaccharide acts as a virulence factor. Curr Opin Microbiol. 2005; 8:60–66.
57. LeVier K, Phillips RW, Grippe VK, Roop RM 2nd, Walker GC. Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science. 2000; 287:2492–2493.
Article
58. Liautard JP, Gross A, Dornand J, Köhler S. Interactions between professional phagocytes and Brucella spp. Microbiologia. 1996; 12:197–206.
59. Lord VR, Schurig GG, Cherwonogrodzky JW, Marcano MJ, Melendez GE. Field study of vaccination of cattle with Brucella abortus strains RB51 and 19 under high and low disease prevalence. Am J Vet Res. 1998; 59:1016–1020.
60. Mallick AI, Singha H, Chaudhuri P, Nadeem A, Khan SA, Dar KA, Owais M. Liposomised recombinant ribosomal L7/L12 protein protects BALB/c mice against Brucella abortus 544 infection. Vaccine. 2007; 25:3692–3704.
Article
61. Martirosyan A, Moreno E, Gorvel JP. An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol Rev. 2011; 240:211–234.
Article
62. McEwen AD. Experiments on contagious abortion. The immunity of cattle inoculated with vaccines of grades virulence. Vet Rec. 1940; 52:815–819.
63. Meeusen EN, Walker J, Peters A, Pastoret PP, Jungersen G. Current status of veterinary vaccines. Clin Microbiol Rev. 2007; 20:489–510.
Article
64. Meyer ME, Gibbons RW. Results of trial use of H-38 vaccine for immunizing beef heifers against experimental exposure to Brucella abortus, strain 2308. Proc Annu Meet U S Anim Health Assoc. 1978; (82):106–119.
65. Minas A, Minas M, Stournara A, Tselepidis S. The “effects” of Rev-1 vaccination of sheep and goats on human brucellosis in Greece. Prev Vet Med. 2004; 64:41–47.
Article
66. Miyoshi A, Bermúdez-Humarán LG, Ribeiro LA, Le Loir Y, Oliveira SC, Langella P, Azevedo V. Heterologous expression of Brucella abortus GroEL heat-shock protein in Lactococcus lactis. Microb Cell Fact. 2006; 5:14.
67. Monreal D, Grilló MJ, González D, Marín CM, De Miguel MJ, López-Goñi I, Blasco JM, Cloeckaert A, Moriyón I. Characterization of Brucella abortus O-polysaccharide and core lipopolysaccharide mutants and demonstration that a complete core is required for rough vaccines to be efficient against Brucella abortus and Brucella ovis in the mouse model. Infect Immun. 2003; 71:3261–3271.
Article
68. Montaraz JA, Winter AJ. Comparison of living and nonliving vaccines for Brucella abortus in BALB/c mice. Infect Immun. 1986; 53:245–251.
Article
69. Moreno E, Stackebrandt E, Dorsch M, Wolters J, Busch M, Mayer H. Brucella abortus 16S rRNA and lipid A reveal a phylogenetic relationship with members of the alpha-2 subdivision of the class Proteobacteria. J Bacteriol. 1990; 172:3569–3576.
Article
70. Moriyón I, Grilló MJ, Monreal D, González D, Marín C, López-Goñi I, Mainar-Jaime RC, Moreno E, Blasco JM. Rough vaccines in animal brucellosis: structural and genetic basis and present status. Vet Res. 2004; 35:1–38.
Article
71. Muñoz-Montesino C, Andrews E, Rivers R, González-Smith A, Moraga-Cid G, Folch H, Céspedes S, Oñate AA. Intraspleen delivery of a DNA vaccine coding for superoxide dismutase (SOD) of Brucella abortus induces SOD-specific CD4+ and CD8+ T cells. Infect Immun. 2004; 72:2081–2087.
Article
72. Nymo IH, Tryland M, Godfroid J. A review of Brucella infection in marine mammals, with special emphasis on Brucella pinnipedialis in the hooded seal (Cystophora cristata). Vet Res. 2011; 42:93.
Article
73. O'Hara MJ, Collins DM, de Lisle GW. Restriction endonuclease analysis of Brucella ovis and other Brucella species. Vet Microbiol. 1985; 10:425–429.
74. Oliveira SC, Harms JS, Banai M, Splitter GA. Recombinant Brucella abortus proteins that induce proliferation and gamma-interferon secretion by CD4+ T cells from Brucella-vaccinated mice and delayed-type hypersensitivity in sensitized guinea pigs. Cell Immunol. 1996; 172:262–268.
Article
75. Oliveira SC, Splitter GA. Immunization of mice with recombinant L7/L12 ribosomal protein confers protection against Brucella abortus infection. Vaccine. 1996; 14:959–962.
Article
76. Olsen SC, Boyle SM, Schurig GG, Sriranganathan NN. Immune responses and protection against experimental challenge after vaccination of bison with Brucella abortus strain RB51 or RB51 overexpressing superoxide dismutase and glycosyltransferase genes. Clin Vaccine Immunol. 2009; 16:535–540.
Article
77. Olsen SC, Johnson C. Immune responses and safety after dart or booster vaccination of bison with Brucella abortus strain RB51. Clin Vaccine Immunol. 2012; 19:642–648.
Article
78. Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. The new global map of human brucellosis. Lancet Infect Dis. 2006; 6:91–99.
Article
79. Pasquevich KA, Estein SM, García Samartino C, Zwerdling A, Coria LM, Barrionuevo P, Fossati CA, Giambartolomei GH, Cassataro J. Immunization with recombinant Brucella species outer membrane protein Omp16 or Omp19 in adjuvant induces specific CD4+ and CD8+ T cells as well as systemic and oral protection against Brucella abortus infection. Infect Immun. 2009; 77:436–445.
Article
80. Pizarro-Cerdá J, Méresse S, Parton RG, van der Goot G, Sola-Landa A, Lopez-Goñi I, Moreno E, Gorvel JP. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Immun. 1998; 66:5711–5724.
Article
81. Porte F, Naroeni A, Ouahrani-Bettache S, Liautard JP. Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome-lysosome fusion in murine macrophages. Infect Immun. 2003; 71:1481–1490.
Article
82. Qian J, Bu Z, Lang X, Yan G, Yang Y, Wang X, Wang X. A safe and molecular-tagged Brucella canis ghosts confers protection against virulent challenge in mice. Vet Microbiol. 2017; 204:121–128.
Article
83. Scholz HC, Pfeffer M, Witte A, Neubauer H, Al Dahouk S, Wernery U, Tomaso H. Specific detection and differentiation of Ochrobactrum anthropi, Ochrobactrum intermedium and Brucella spp. by a multi-primer PCR that targets the recA gene. J Med Microbiol. 2008; 57:64–71.
Article
84. Schurig GG, Roop RM 2nd, Bagchi T, Boyle S, Buhrman D, Sriranganathan N. Biological properties of RB51; a stable rough strain of Brucella abortus. Vet Microbiol. 1991; 28:171–188.
Article
85. Schurig GG, Sriranganathan N, Corbel MJ. Brucellosis vaccines: past, present and future. Vet Microbiol. 2002; 90:479–496.
Article
86. Sieira R, Comerci DJ, Sánchez DO, Ugalde RA. A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J Bacteriol. 2000; 182:4849–4855.
Article
87. Silva TM, Costa EA, Paixão TA, Tsolis RM, Santos RL. Laboratory animal models for brucellosis research. J Biomed Biotechnol. 2011; 2011:518323.
Article
88. Singha H, Mallick AI, Jana C, Fatima N, Owais M, Chaudhuri P. Co-immunization with interlukin-18 enhances the protective efficacy of liposomes encapsulated recombinant Cu-Zn superoxide dismutase protein against Brucella abortus. Vaccine. 2011; 29:4720–4727.
Article
89. Stabel TJ, Mayfield JE, Morfitt DC, Wannemuehler MJ. Oral immunization of mice and swine with an attenuated Salmonella choleraesuis [delta cya-12 delta(crp-cdt)19] mutant containing a recombinant plasmid. Infect Immun. 1993; 61:610–618.
Article
90. Starr T, Child R, Wehrly TD, Hansen B, Hwang S, López-Otin C, Virgin HW, Celli J. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe. 2012; 11:33–45.
Article
91. Stevens MG, Tabatabai LB, Olsen SC, Cheville NF. Immune responses to superoxide dismutase and synthetic peptides of superoxide dismutase in cattle vaccinated with Brucella abortus strain 19 or RB51. Vet Microbiol. 1994; 41:383–389.
Article
92. Suárez-Esquivel M, Ruiz-Villalobos N, Jiménez-Rojas C, Barquero-Calvo E, Chacón-Díaz C, Víquez-Ruiz E, Rojas-Campos N, Baker KS, Oviedo-Sánchez G, Amuy E, Chaves-Olarte E, Thomson NR, Moreno E, Guzmán-Verri C. Brucella neotomae infection in humans, Costa Rica. Emerg Infect Dis. 2017; 23:997–1000.
93. Tabatabai LB, Pugh GW Jr. Modulation of immune responses in Balb/c mice vaccinated with Brucella abortus Cu-Zn superoxide dismutase synthetic peptide vaccine. Vaccine. 1994; 12:919–924.
Article
94. Tabatabai LB, Pugh GW Jr, Stevens MG, Phillips M, McDonald TJ. Monophosphoryl lipid A-induced immune enhancement of Brucella abortus salt-extractable protein and lipopolysaccharide vaccines in BALB/c mice. Am J Vet Res. 1992; 53:1900–1907.
95. Tabynov K, Yespembetov B, Matikhan N, Ryskeldinova S, Zinina N, Kydyrbayev Z, Assanzhanova N, Tabynov K, Renukaradhya GJ, Mukhitdinova G, Sansyzbay A. First evaluation of an influenza viral vector based Brucella abortus vaccine in sheep and goats: assessment of safety, immunogenicity and protective efficacy against Brucella melitensis infection. Vet Microbiol. 2016; 197:15–20.
Article
96. Tasiame W, Emikpe BO, Folitse RD, Fofie CO, Burimuah V, Johnson S, Awuni JA, Afari E, Yebuah N, Wurapa F. The prevalence of brucellosis in cattle and their handlers in North Tongu District of Volta Region, Ghana. Afr J Infect Dis. 2016; 10:111–117.
Article
97. Taylor AW, McDiarmid A. The stability of the avirulent characters of Brucella abortus strain 19 and strain 45/20 in lactating and pregnant cows. Vet Rec. 1949; 61:317–318.
98. Toth TE, Cobb JA, Boyle SM, Roop RM, Schurig GG. Selective humoral immune response of Balb/C mice to Brucella abortus proteins expressed by vaccinia virus recombinants. Vet Microbiol. 1995; 45:171–183.
Article
99. Trant CG, Lacerda TL, Carvalho NB, Azevedo V, Rosinha GM, Salcedo SP, Gorvel JP, Oliveira SC. The Brucella abortus phosphoglycerate kinase mutant is highly attenuated and induces protection superior to that of vaccine strain 19 in immunocompromised and immunocompetent mice. Infect Immun. 2010; 78:2283–2291.
Article
100. Tukana A, Gummow B. Dairy farm demographics and management factors that played a role in the re-emergence of brucellosis on dairy cattle farms in Fiji. Trop Anim Health Prod. 2017; 49:1171–1178.
Article
101. Ugalde JE, Comerci DJ, Leguizamón MS, Ugalde RA. Evaluation of Brucella abortus phosphoglucomutase (pgm) mutant as a new live rough-phenotype vaccine. Infect Immun. 2003; 71:6264–6269.
Article
102. Ugalde JE, Czibener C, Feldman MF, Ugalde RA. Identification and characterization of the Brucella abortus phosphoglucomutase gene: role of lipopolysaccharide in virulence and intracellular multiplication. Infect Immun. 2000; 68:5716–5723.
Article
103. Van Campen H, Rhyan J. The role of wildlife in diseases of cattle. Vet Clin North Am Food Anim Pract. 2010; 26:147–161.
Article
104. Velikovsky CA, Cassataro J, Giambartolomei GH, Goldbaum FA, Estein S, Bowden RA, Bruno L, Fossati CA, Spitz M. A DNA vaccine encoding lumazine synthase from Brucella abortus induces protective immunity in BALB/c mice. Infect Immun. 2002; 70:2507–2511.
Article
105. Vershilova PA. The use of live vaccine for vaccination of human beings against brucellosis in the USSR. Bull World Health Organ. 1961; 24:85–89.
106. Wernery U. Camelid brucellosis: a review. Rev Sci Tech. 2014; 33:839–857.
Article
107. Winter AJ, Rowe GE, Duncan JR, Eis MJ, Widom J, Ganem B, Morein B. Effectiveness of natural and synthetic complexes of porin and O polysaccharide as vaccines against Brucella abortus in mice. Infect Immun. 1988; 56:2808–2817.
Article
108. Winter AJ, Schurig GG, Boyle SM, Sriranganathan N, Bevins JS, Enright FM, Elzer PH, Kopec JD. Protection of BALB/c mice against homologous and heterologous species of Brucella by rough strain vaccines derived from Brucella melitensis and Brucella suis biovar 4. Am J Vet Res. 1996; 57:677–683.
109. Yang X, Hudson M, Walters N, Bargatze RF, Pascual DW. Selection of protective epitopes for Brucella melitensis by DNA vaccination. Infect Immun. 2005; 73:7297–7303.
Article
110. Yang X, Skyberg JA, Cao L, Clapp B, Thornburg T, Pascual DW. Progress in Brucella vaccine development. Front Biol (Beijing). 2013; 8:60–77.
111. Yang Y, Yin J, Guo D, Lang X, Wang X. Immunization of mice with recombinant S-adenosyl-L-homocysteine hydrolase protein confers protection against Brucella melitensis infection. FEMS Immunol Med Microbiol. 2011; 61:159–167.
Article
Full Text Links
  • JVS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr