Obstet Gynecol Sci.  2016 Nov;59(6):489-497. 10.5468/ogs.2016.59.6.489.

Combined SYBR Green real-time polymerase chain reaction and microarray method for the simultaneous determination of human papillomavirus loads and genotypes

Affiliations
  • 1Laboratory of Research and Development for Genomics, Cheil General Hospital and Women’s Healthcare Center, Dankook University College of Medicine, Seoul, Korea.
  • 2Department of Pathology, Cheil General Hospital and Women’s Healthcare Center, Dankook University College of Medicine, Seoul, Korea.
  • 3Department of Obstetrics and Gynecology, Cheil General Hospital and Women’s Healthcare Center, Dankook University College of Medicine, Seoul, Korea. kimonc@hotmail.com
  • 4Department of Radiation Oncology, Cheil General Hospital and Women’s Healthcare Center, Dankook University College of Medicine, Seoul, Korea.
  • 5Department of Anatomy and Cell Biology, Hanyang University College of Medicine, Seoul, Korea.

Abstract


OBJECTIVE
The aim of this study was to describe the principle of the Cheil HPV DNA Chip assay and evaluate its accuracy. In order to quantify the human papillomavirus (HPV) load and identify HPV genotypes simultaneously, this assay combined the two methods: SYBR Green quantitative real-time polymerase chain reaction (PCR) and DNA microarray.
METHODS
We designed novel consensus primer sets that target the conserved region of the HPV L1 gene for quantifying and detecting a broad range of HPV types by quantitative real-time PCR. Subsequently, using the PCR products, DNA microarray was performed with 36 HPV type-specific probes. To validate this method, direct sequencing and correlation analysis among HPV genotype, viral load, and cytological abnormality was performed by Cohen's kappa values, two-sided McNemar chi-square test, Kruskal-Wallis test, and odds ratios.
RESULTS
The kappa value of the Cheil HPV DNA Chip was 0.963 (95% confidence interval, 0.919 to 0.98), which was significantly higher than the value of 0.527 (95% confidence interval, 0.447 to 0.59) obtained using a conventional HPV DNA Chip. HPV16 (χ²=62.28, P<0.01), HPV33 (χ²=7.18, P<0.01), and HPV58 (χ²=9.52, P<0.01), which are classified as high-risk HPVs, were detected at significant levels in samples with high-grade lesions. And viral loads tended to be higher in groups with high odds ratios.
CONCLUSION
The Cheil HPV DNA Chip is an effective diagnostic assay for simultaneously detecting HPV genotypes and loads in cervical samples.

Keyword

Diagnosis; Genotyping; Human papilloma virus; Microarray; Viral load

MeSH Terms

Consensus
Diagnosis
Genotype*
Humans*
Methods*
Odds Ratio
Oligonucleotide Array Sequence Analysis
Papillomaviridae
Polymerase Chain Reaction
Real-Time Polymerase Chain Reaction*
Viral Load

Figure

  • Fig. 1 Validation of quantitative analysis. Comparison of (A) viral load and (B) relative light unit/cutoff value. Circles indicate the average of measured values in each group, and bars indicate the standard deviation. ASC-US, atypical squamous cells of undetermined significance; ASC-H, atypical squamous cells-cannot exclude high-grade squamous intraepithelial lesion; LSIL, low-grade squamous intraepithelial lesion; HSIL, high-grade squamous intraepithelial lesion; RLU, relative light unit; CO, cut-off.


Reference

1. Dalstein V, Riethmuller D, Pretet JL, Le Bail Carval K, Sautiere JL, Carbillet JP, et al. Persistence and load of high-risk HPV are predictors for development of high-grade cervical lesions: a longitudinal French cohort study. Int J Cancer. 2003; 106:396–403.
2. Schlecht NF, Kulaga S, Robitaille J, Ferreira S, Santos M, Miyamura RA, et al. Persistent human papillomavirus infection as a predictor of cervical intraepithelial neoplasia. JAMA. 2001; 286:3106–3114.
3. Lorincz AT, Reid R, Jenson AB, Greenberg MD, Lancaster W, Kurman RJ. Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet Gynecol. 1992; 79:328–337.
4. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999; 189:12–19.
5. Heard I, Tassie JM, Schmitz V, Mandelbrot L, Kazatchkine MD, Orth G. Increased risk of cervical disease among human immunodeficiency virus-infected women with severe immunosuppression and high human papillomavirus load. Obstet Gynecol. 2000; 96:403–409.
6. Lai HC, Peng MY, Nieh S, Yu CP, Chang CC, Lin YW, et al. Differential viral loads of human papillomavirus 16 and 58 infections in the spectrum of cervical carcinogenesis. Int J Gynecol Cancer. 2006; 16:730–735.
7. Roberts I, Ng G, Foster N, Stanley M, Herdman MT, Pett MR, et al. Critical evaluation of HPV16 gene copy number quantification by SYBR green PCR. BMC Biotechnol. 2008; 8:57.
8. Ramanakumar AV, Goncalves O, Richardson H, Tellier P, Ferenczy A, Coutlee F, et al. Human papillomavirus (HPV) types 16, 18, 31, 45 DNA loads and HPV-16 integration in persistent and transient infections in young women. BMC Infect Dis. 2010; 10:326.
9. Arias-Pulido H, Peyton CL, Joste NE, Vargas H, Wheeler CM. Human papillomavirus type 16 integration in cervical carcinoma in situ and in invasive cervical cancer. J Clin Microbiol. 2006; 44:1755–1762.
10. Vaccarella S, Franceschi S, Snijders PJ, Herrero R, Meijer CJ, Plummer M, et al. Concurrent infection with multiple human papillomavirus types: pooled analysis of the IARC HPV Prevalence Surveys. Cancer Epidemiol Biomarkers Prev. 2010; 19:503–510.
11. Schmitt M, Depuydt C, Benoy I, Bogers J, Antoine J, Arbyn M, et al. Multiple human papillomavirus infections with high viral loads are associated with cervical lesions but do not differentiate grades of cervical abnormalities. J Clin Microbiol. 2013; 51:1458–1464.
12. De-Castro Arce J, Gockel-Krzikalla E, Rosl F. Retinoic acid receptor beta silences human papillomavirus-18 oncogene expression by induction of de novo methylation and heterochromatinization of the viral control region. J Biol Chem. 2007; 282:28520–28529.
13. Carbone M, Klein G, Gruber J, Wong M. Modern criteria to establish human cancer etiology. Cancer Res. 2004; 64:5518–5524.
14. Santos AL, Derchain SF, Martins MR, Sarian LO, Martinez EZ, Syrjanen KJ. Human papillomavirus viral load in predicting high-grade CIN in women with cervical smears showing only atypical squamous cells or low-grade squamous intraepithelial lesion. Sao Paulo Med J. 2003; 121:238–243.
15. Broccolo F, Chiari S, Piana A, Castiglia P, Dell’Anna T, Garcia-Parra R, et al. Prevalence and viral load of oncogenic human papillomavirus types associated with cervical carcinoma in a population of North Italy. J Med Virol. 2009; 81:278–287.
16. Murall CL, Bauch CT, Day T. Could the human papillomavirus vaccines drive virulence evolution? Proc Biol Sci. 2015; 282:20141069.
17. Elfstrom KM, Dillner J, Arnheim-Dahlstrom L. Organization and quality of HPV vaccination programs in Europe. Vaccine. 2015; 33:1673–1681.
18. Kumar RV, Bhasker S. Potential opportunities to reduce cervical cancer by addressing risk factors other than HPV. J Gynecol Oncol. 2013; 24:295–297.
19. Kim TJ, Jin HT, Hur SY, Yang HG, Seo YB, Hong SR, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun. 2014; 5:5317.
20. Fleiss JL. Statistical methods for rates and proportions. 2nd ed. New York (NY): John Wiley and Sons;1981.
21. Cai YP, Yang Y, Zhu BL, Li Y, Xia XY, Zhang RF, et al. Comparison of human papillomavirus detection and genotyping with four different prime sets by PCR-sequencing. Biomed Environ Sci. 2013; 26:40–47.
22. Husnjak K, Grce M, Magdic L, Pavelic K. Comparison of five different polymerase chain reaction methods for detection of human papillomavirus in cervical cell specimens. J Virol Methods. 2000; 88:125–134.
23. Bae JH, Lee SJ, Kim CJ, Hur SY, Park YG, Lee WC, et al. Human papillomavirus (HPV) type distribution in Korean women: a meta-analysis. J Microbiol Biotechnol. 2008; 18:788–794.
24. Hariri S, Unger ER, Sternberg M, Dunne EF, Swan D, Patel S, et al. Prevalence of genital human papillomavirus among females in the United States, the National Health And Nutrition Examination Survey, 2003-2006. J Infect Dis. 2011; 204:566–573.
25. Hwang HS, Park M, Lee SY, Kwon KH, Pang MG. Distribution and prevalence of human papillomavirus genotypes in routine pap smear of 2,470 korean women determined by DNA chip. Cancer Epidemiol Biomarkers Prev. 2004; 13:2153–2156.
26. An HJ, Cho NH, Lee SY, Kim IH, Lee C, Kim SJ, et al. Correlation of cervical carcinoma and precancerous lesions with human papillomavirus (HPV) genotypes detected with the HPV DNA chip microarray method. Cancer. 2003; 97:1672–1680.
Full Text Links
  • OGS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr