Investig Clin Urol.  2017 Jan;58(1):3-11. 10.4111/icu.2017.58.1.3.

Lessons learned over a decade of pediatric robotic ureteral reimplantation

Affiliations
  • 1Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
  • 2Division of Pediatric Urology, Department of Surgery, Texas Children's Hospital and Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA. cxkoh@texaschildrens.org

Abstract

The da Vinci robotic system has improved surgeon dexterity, ergonomics, and visualization to allow for a minimally invasive option for complex reconstructive procedures in children. Over the past decade, robot-assisted laparoscopic ureteral reimplantation (RALUR) has become a viable minimally invasive surgical option for pediatric vesicoureteral reflux (VUR). However, higher-than-expected complication rates and suboptimal reflux resolution rates at some centers have also been reported. The heterogeneity of surgical outcomes may arise from the inherent and underestimated complexity of the RALUR procedure that may justify its reclassification as a complex reconstructive procedure and especially for robotic surgeons early in their learning curve. Currently, no consensus exists on the role of RALUR for the surgical management of VUR. High success rates and low major complication rates are the expected norm for the current gold standard surgical option of open ureteral reimplantation. Similar to how robot-assisted laparoscopic surgery has gradually replaced open surgery as the most utilized option for prostatectomy in prostate cancer patients, RALUR may become a higher utilized surgical option in children with VUR if the adoption of standardized surgical techniques that have been associated with optimal outcomes can be adopted during the second decade of RALUR. A future standard of RALUR for children with VUR whose parents seek a minimally invasive surgical option can arise if widespread achievement of high success rates and low major complication rates can be obtained, similar to the replacement of open surgery with robot-assisted laparoscopic radical prostectomy as the new strandard for men with prostate cancer.

Keyword

Child; Laparoscopy; Robotics; Urologic surgical procedures; Vesico-ureteral reflux

MeSH Terms

Child
Consensus
Human Engineering
Humans
Laparoscopy
Learning Curve
Male
Parents
Population Characteristics
Prostatectomy
Prostatic Neoplasms
Replantation*
Robotics
Surgeons
Ureter*
Urologic Surgical Procedures
Vesico-Ureteral Reflux

Figure

  • Fig. 1 Personal historical perspective of pediatric robotic surgical cases over the past decade that include intravesical RALUR (ureteral reimplantation) cases. RALUR remains a significant procedure in terms of surgical volume, and second in volume only to robotic pyeloplasty. RALUR, robot-assisted laparoscopic ureteral reimplantation.


Cited by  1 articles

Relative to open surgery, minimally-invasive renal and ureteral pediatric surgery offers no improvement in 30-day complications, yet requires longer operative time: Data from the National Surgical Quality Improvement Program Pediatrics
Marc Colaco, Austin Hester, William Visser, Alison Rasper, Ryan Terlecki
Investig Clin Urol. 2018;59(3):200-205.    doi: 10.4111/icu.2018.59.3.200.


Reference

1. Arant BS Jr. Vesicoureteric reflux and renal injury. Am J Kidney Dis. 1991; 17:491–511. PMID: 2024650.
Article
2. Global Burden of Disease Cancer Collaboration. Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 2016; 12. 3. DOI: 10.1001/jamaoncol.2016.5688. [Epub].
3. Subcommittee on Urinary Tract Infection. Steering Committee on Quality Improvement and Management. Roberts KB. Urinary tract infection: clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics. 2011; 128:595–610. PMID: 21873693.
Article
4. Capone MA, Balestracci A, Toledo I, Martin SM. Diagnosis of vesicoureteral reflux according to the 1999 and 2011 guidelines of the Subcommittee on Urinary Tract Infection of the American Academy of Pediatrics. Arch Argent Pediatr. 2016; 114:129–134. PMID: 27079390.
5. Lewis R, Hornberger B. The current state of prostate-specific antigen testing. JAAPA. 2016; 29:51–53.
Article
6. Sood A, Jeong W, Peabody JO, Hemal AK, Menon M. Robot-assisted radical prostatectomy: inching toward gold standard. Urol Clin North Am. 2014; 41:473–484. PMID: 25306159.
7. Baek M, Kim KD. Current surgical management of vesicoureteral reflux. Korean J Urol. 2013; 54:732–737. PMID: 24255753.
Article
8. Elder JS, Peters CA, Arant BS Jr, Ewalt DH, Hawtrey CE, Hurwitz RS, et al. Pediatric Vesicoureteral Reflux Guidelines Panel summary report on the management of primary vesicoureteral reflux in children. J Urol. 1997; 157:1846–1851. PMID: 9112544.
Article
9. Song SH, Kim KS. Current status of robot-assisted laparoscopic surgery in pediatric urology. Korean J Urol. 2014; 55:499–504. PMID: 25132942.
Article
10. Cundy TP, Shetty K, Clark J, Chang TP, Sriskandarajah K, Gattas NE, et al. The first decade of robotic surgery in children. J Pediatr Surg. 2013; 48:858–865. PMID: 23583146.
Article
11. Peters CA. Robotically assisted surgery in pediatric urology. Urol Clin North Am. 2004; 31:743–752. PMID: 15474601.
Article
12. Peters CA, Woo R. Intravesical robotically assisted bilateral ureteral reimplantation. J Endourol. 2005; 19:618–621. PMID: 16053348.
Article
13. Casale P, Patel RP, Kolon TF. Nerve sparing robotic extravesical ureteral reimplantation. J Urol. 2008; 179:1987–1989. PMID: 18355846.
Article
14. Lee RS, Sethi AS, Passerotti CC, Peters CA. Robot-assisted laparoscopic nephrectomy and contralateral ureteral reimplantation in children. J Endourol. 2010; 24:123–128. PMID: 19958154.
Article
15. Smith RP, Oliver JL, Peters CA. Pediatric robotic extravesical ureteral reimplantation: comparison with open surgery. J Urol. 2011; 185:1876–1881. PMID: 21421231.
Article
16. Marchini GS, Hong YK, Minnillo BJ, Diamond DA, Houck CS, Meier PM, et al. Robotic assisted laparoscopic ureteral reimplantation in children: case matched comparative study with open surgical approach. J Urol. 2011; 185:1870–1875. PMID: 21421223.
Article
17. Chan KW, Lee KH, Tam YH, Sihoe JD. Early experience in robotic-assisted laparoscopic bilateral intravesical ureteral reimplantation for vesicoureteral reflux in children. J Robot Surg. 2012; 6:259–262. PMID: 27638284.
Article
18. Kasturi S, Sehgal SS, Christman MS, Lambert SM, Casale P. Prospective long-term analysis of nerve-sparing extravesical robotic-assisted laparoscopic ureteral reimplantation. Urology. 2012; 79:680–683. PMID: 22197530.
Article
19. Chalmers D, Herbst K, Kim C. Robotic-assisted laparoscopic extravesical ureteral reimplantation: an initial experience. J Pediatr Urol. 2012; 8:268–271. PMID: 21641872.
Article
20. Callewaert PR, Biallosterski BT, Rahnama'i MS, Van Kerrebroeck PE. Robotic extravesical anti-reflux operations in complex cases: technical considerations and preliminary results. Urol Int. 2012; 88:6–11. PMID: 22076472.
Article
21. Dangle PP, Shah A, Gundeti MS. Robot-assisted laparoscopic ureteric reimplantation: extravesical technique. BJU Int. 2014; 114:630–632. PMID: 24841534.
Article
22. Schomburg JL, Haberman K, Willihnganz-Lawson KH, Shukla AR. Robot-assisted laparoscopic ureteral reimplantation: a single surgeon comparison to open surgery. J Pediatr Urol. 2014; 10:875–879. PMID: 24766855.
Article
23. Akhavan A, Avery D, Lendvay TS. Robot-assisted extravesical ureteral reimplantation: outcomes and conclusions from 78 ureters. J Pediatr Urol. 2014; 10:864–868. PMID: 24642080.
Article
24. Hayashi Y, Mizuno K, Kurokawa S, Nakane A, Kamisawa H, Nishio H, et al. Extravesical robot-assisted laparoscopic ureteral reimplantation for vesicoureteral reflux: initial experience in Japan with the ureteral advancement technique. Int J Urol. 2014; 21:1016–1021. PMID: 24846118.
Article
25. Grimsby GM, Dwyer ME, Jacobs MA, Ost MC, Schneck FX, Cannon GM, et al. Multi-institutional review of outcomes of robot-assisted laparoscopic extravesical ureteral reimplantation. J Urol. 2015; 193(5 Suppl):1791–1795. PMID: 25301094.
Article
26. Silay MS, Baek M, Koh CJ. Robot-assisted laparoscopic extravesical ureteral reimplantation in children: top-down suturing technique without stent placement. J Endourol. 2015; 29:864–866. PMID: 25674670.
Article
27. Herz D, Fuchs M, Todd A, McLeod D, Smith J. Robot-assisted laparoscopic extravesical ureteral reimplant: A critical look at surgical outcomes. J Pediatr Urol. 2016; 12:402.e1–402.e9. PMID: 27522319.
Article
28. Arlen AM, Broderick KM, Travers C, Smith EA, Elmore JM, Kirsch AJ. Outcomes of complex robot-assisted extravesical ureteral reimplantation in the pediatric population. J Pediatr Urol. 2016; 12:169.e1–169.e6. PMID: 26747012.
Article
29. Gundeti MS, Boysen WR, Shah A. Robot-assisted laparoscopic extravesical ureteral reimplantation: technique modifications contribute to optimized outcomes. Eur Urol. 2016; 70:818–823. PMID: 27036858.
Article
30. Weiss DA, Shukla AR. The robotic-assisted ureteral reimplantation: the evolution to a new standard. Urol Clin North Am. 2015; 42:99–109. PMID: 25455176.
31. Timberlake MD, Peters CA. Current status of robotic-assisted surgery for the treatment of vesicoureteral reflux in children. Curr Opin Urol. 2017; 27:20–26. PMID: 27764016.
Article
32. Bowen DK, Faasse MA, Liu DB, Gong EM, Lindgren BW, Johnson EK. Use of pediatric open, laparoscopic and robot-assisted laparoscopic ureteral reimplantation in the United States: 2000 to 2012. J Urol. 2016; 196:207–212. PMID: 26880414.
Article
33. Yeung CK, Sihoe JD, Borzi PA. Endoscopic cross-trigonal ureteral reimplantation under carbon dioxide bladder insufflation: a novel technique. J Endourol. 2005; 19:295–299. PMID: 15865516.
Article
34. Valla JS, Steyaert H, Griffin SJ, Lauron J, Fragoso AC, Arnaud P, et al. Transvesicoscopic Cohen ureteric reimplantation for vesicoureteral reflux in children: a single-centre 5-year experience. J Pediatr Urol. 2009; 5:466–471. PMID: 19428305.
Article
35. Emir H, Mammadov E, Elicevik M, Buyukunal C, Soylet Y. Transvesicoscopic cross-trigonal ureteroneocystostomy in children: a single-center experience. J Pediatr Urol. 2012; 8:83–86. PMID: 21084225.
Article
36. Hong CH, Kim JH, Jung HJ, Im YJ, Han SW. Single-surgeon experience with transvesicoscopic ureteral reimplantation in children with vesicoureteral reflux. Urology. 2011; 77:1465–1469. PMID: 21333340.
Article
37. Chung MS, Han SW, Jung HJ, Im YJ, Han HH, Na JC, et al. Transvesicoscopic ureteral reimplantation in children with bilateral vesicoureteral reflux: surgical technique and results. J Laparoendosc Adv Surg Tech A. 2012; 22:295–300. PMID: 22356205.
Article
38. Soh S, Kobori Y, Shin T, Suzuki K, Iwahata T, Sadaoka Y, et al. Transvesicoscopic ureteral reimplantation: Politano-Leadbetter versus Cohen technique. Int J Urol. 2015; 22:394–399. PMID: 25754455.
Article
39. Liu X, Liu JH, Zhang DY, Hua Y, Lin T, Wei GH, et al. Retrospective study to determine the short-term outcomes of a modified pneumovesical Glenn-Anderson procedure for treating primary obstructing megaureter. J Pediatr Urol. 2015; 11:266.e1–266.e6. PMID: 26076822.
Article
40. Choi H, Park JY, Bae JH. Initial experiences of laparoscopic intravesical detrusorraphy using the Politano-Leadbetter technique. J Pediatr Urol. 2016; 12:110.e1–110.e7. PMID: 26750185.
Article
41. Gregoir W, Vanregemorter G. Congenital vesico-ureteral reflux. Urol Int. 1964; 18:122–136. PMID: 14215746.
42. Riedmiller H, Gerharz EW. Antireflux surgery: Lich-Gregoir extravesical ureteric tunnelling. BJU Int. 2008; 101:1467–1482. PMID: 18454801.
Article
43. Hendren WH. Ureteral reimplantation in children. J Pediatr Surg. 1968; 3:649–664.
Article
44. Lee RS, Retik AB, Borer JG, Peters CA. Pediatric robot assisted laparoscopic dismembered pyeloplasty: comparison with a cohort of open surgery. J Urol. 2006; 175:683–687. PMID: 16407025.
Article
45. Barrieras D, Lapointe S, Reddy PP, Williot P, McLorie GA, Bägli D, et al. Urinary retention after bilateral extravesical ureteral reimplantation: does dissection distal to the ureteral orifice have a role? J Urol. 1999; 162(3 Pt 2):1197–1200. PMID: 10458465.
Article
46. Lakshmanan Y, Fung LC. Laparoscopic extravesicular ureteral reimplantation for vesicoureteral reflux: recent technical advances. J Endourol. 2000; 14:589–593. PMID: 11030542.
47. Dangle PP, Razmaria AA, Towle VL, Frim DM, Gundeti MS. Is pelvic plexus nerve documentation feasible during robotic assisted laparoscopic ureteral reimplantation with extravesical approach? J Pediatr Urol. 2013; 9:442–447. PMID: 23218755.
Article
48. Orvieto MA, Large M, Gundeti MS. Robotic paediatric urology. BJU Int. 2012; 110:2–13.
Article
49. Gundeti MS, Kojima Y, Haga N, Kiriluk K. Robotic-assisted laparoscopic reconstructive surgery in the lower urinary tract. Curr Urol Rep. 2013; 14:333–341. PMID: 23740381.
Article
50. Mahida JB, Cooper JN, Herz D, Diefenbach KA, Deans KJ, Minneci PC, et al. Utilization and costs associated with robotic surgery in children. J Surg Res. 2015; 199:169–176. PMID: 26013442.
Article
51. Kurtz MP, Leow JJ, Varda BK, Logvinenko T, Yu RN, Nelson CP, et al. Robotic versus open pediatric ureteral reimplantation: costs and complications from a nationwide sample. J Pediatr Urol. 2016; 12:408.e1–408.e6. PMID: 27593917.
Article
52. Grant M, Stanasel I, Koh CJ. Pediatric medical device consortia: a novel pathway for device development for pediatric urologists and other pediatric specialists. Urol Pract. 2015; 2:206–210.
Full Text Links
  • ICU
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr