World J Mens Health.  2013 Dec;31(3):208-214.

Low-Intensity Shock Wave Therapy and Its Application to Erectile Dysfunction

Affiliations
  • 1Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China. xinzc@bjmu.edu.cn
  • 2Department of Urology, China-Japan Union Hospital of Jilin University, Jilin, China.
  • 3Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.

Abstract

Although phosphodiesterase type 5 inhibitors (PDE5Is) are a revolution in the treatment of erectile dysfunction (ED) and have been marketed since 1998, they cannot restore pathological changes in the penis. Low-energy shock wave therapy (LESWT) has been developed for treating ED, and clinical studies have shown that LESWT has the potential to affect PDE5I non-responders with ED with few adverse effects. Animal studies have shown that LESWT significantly improves penile hemodynamics and restores pathological changes in the penis of diabetic ED animal models. Although the mechanisms remain to be investigated, recent studies have reported that LESWT could partially restore corpus cavernosum fibromuscular pathological changes, endothelial dysfunction, and peripheral neuropathy. LESWT could be a novel modality for treating ED, and particularly PDE5I non-responders with organic ED, in the near future. However, further extensive evidence-based basic and clinical studies are needed. This review intends to summarize the scientific background underlying the effect of LESWT on ED.

Keyword

Erectile dysfunction; ESWL; Extracorporeal shockwave lithotripsy; Phosphodiesterase 5 inhibitors

MeSH Terms

Animals
Erectile Dysfunction*
Hemodynamics
Lithotripsy
Male
Models, Animal
Penis
Peripheral Nervous System Diseases
Phosphodiesterase 5 Inhibitors
Shock*
Phosphodiesterase 5 Inhibitors

Reference

1. Shamloul R, Ghanem H. Erectile dysfunction. Lancet. 2013; 381:153–165.
Article
2. Pushkar' DIu, Kamalov AA, Al'-Shukri SKh, Erkovich AA, Kogan MI, Pavlov VN, et al. Analysis of the results of epidemiological study on prevalence of erectile dysfunction in the Russian Federation. Urologiia. 2012; 6:5–9.
3. Patel DV, Halls J, Patel U. Investigation of erectile dysfunction. Br J Radiol. 2012; 85:S69–S78.
Article
4. Angulo J, González-Corrochano R, Cuevas P, Fernández A, La Fuente JM, Rolo F, et al. Diabetes exacerbates the functional deficiency of NO/cGMP pathway associated with erectile dysfunction in human corpus cavernosum and penile arteries. J Sex Med. 2010; 7:758–768.
Article
5. Zhou F, Li GY, Gao ZZ, Liu J, Liu T, Li WR, et al. The TGF-β1/Smad/CTGF pathway and corpus cavernosum fibrous-muscular alterations in rats with streptozotocin-induced diabetes. J Androl. 2012; 33:651–659.
Article
6. Sánchez A, Contreras C, Martínez MP, Climent B, Benedito S, García-Sacristán A, et al. Role of neural NO synthase (nNOS) uncoupling in the dysfunctional nitrergic vasorelaxation of penile arteries from insulin-resistant obese Zucker rats. PLoS One. 2012; 7:e36027.
Article
7. Long T, Liu G, Wang Y, Chen Y, Zhang Y, Qin D. TNF-α, erectile dysfunction, and NADPH oxidase-mediated ROS generation in corpus cavernosum in high-fat diet/streptozotocin-induced diabetic rats. J Sex Med. 2012; 9:1801–1814.
Article
8. Lin H, Yuan J, Ruan KH, Yang W, Zhang J, Dai Y, et al. COX-2-10aa-PGIS gene therapy improves erectile function in rats after cavernous nerve injury. J Sex Med. 2013; 10:1476–1487.
Article
9. Hakim L, Van der Aa F, Bivalacqua TJ, Hedlund P, Albersen M. Emerging tools for erectile dysfunction: a role for regenerative medicine. Nat Rev Urol. 2012; 9:520–536.
Article
10. Ryu JK, Lee M, Choi MJ, Kim HA, Jin HR, Kim WJ, et al. Gene therapy with an erythropoietin enhancer-mediated, hypoxia-inducible gene expression system in the corpus cavernosum of mice with high-cholesterol diet-induced erectile dysfunction. J Androl. 2012; 33:845–853.
Article
11. Vaegler M, Lenis AT, Daum L, Amend B, Stenzl A, Damaser MS, et al. Stem cell therapy for voiding and erectile dysfunction. Nat Rev Urol. 2012; [Epub ahead of print].
Article
12. Zhang H, Albersen M, Jin X, Lin G. Stem cells: novel players in the treatment of erectile dysfunction. Asian J Androl. 2012; 14:145–155.
Article
13. Lin CS, Xin ZC, Wang Z, Deng C, Huang YC, Lin G, et al. Stem cell therapy for erectile dysfunction: a critical review. Stem Cells Dev. 2012; 21:343–351.
Article
14. Zhou F, Xin H, Liu T, Li GY, Gao ZZ, Liu J, et al. Effects of icariside II on improving erectile function in rats with streptozotocin-induced diabetes. J Androl. 2012; 33:832–844.
Article
15. Liu T, Xin H, Li WR, Zhou F, Li GY, Gong YQ, et al. Effects of icariin on improving erectile function in streptozotocin-induced diabetic rats. J Sex Med. 2011; 8:2761–2772.
Article
16. Vardi Y, Appel B, Jacob G, Massarwi O, Gruenwald I. Can low-intensity extracorporeal shockwave therapy improve erectile function? A 6-month follow-up pilot study in patients with organic erectile dysfunction. Eur Urol. 2010; 58:243–248.
Article
17. Rassweiler JJ, Knoll T, Köhrmann KU, McAteer JA, Lingeman JE, Cleveland RO, et al. Shock wave technology and application: an update. Eur Urol. 2011; 59:784–796.
Article
18. Chaussy C, Brendel W, Schmiedt E. Extracorporeally induced destruction of kidney stones by shock waves. Lancet. 1980; 2:1265–1268.
Article
19. Capaccio P, Torretta S, Pignataro L. Extracorporeal lithotripsy techniques for salivary stones. Otolaryngol Clin North Am. 2009; 42:1139–1159.
Article
20. Tandan M, Reddy DN. Extracorporeal shock wave lithotripsy for pancreatic and large common bile duct stones. World J Gastroenterol. 2011; 17:4365–4371.
Article
21. Tandan M, Reddy DN, Santosh D, Reddy V, Koppuju V, Lakhtakia S, et al. Extracorporeal shock wave lithotripsy of large difficult common bile duct stones: efficacy and analysis of factors that favor stone fragmentation. J Gastroenterol Hepatol. 2009; 24:1370–1374.
Article
22. Alvarez RG, Cincere B, Channappa C, Langerman R, Schulte R, Jaakkola J, et al. Extracorporeal shock wave treatment of non- or delayed union of proximal metatarsal fractures. Foot Ankle Int. 2011; 32:746–754.
Article
23. Yasuda I. Management of the bile duct stone: current situation in Japan. Dig Endosc. 2010; 22:Suppl 1. S76–S78.
Article
24. Bara T, Synder M. Nine-years experience with the use of shock waves for treatment of bone union disturbances. Ortop Traumatol Rehabil. 2007; 9:254–258.
25. Rompe JD, Kirkpatrick CJ, Küllmer K, Schwitalle M, Krischek O. Dose-related effects of shock waves on rabbit tendo Achillis. A sonographic and histological study. J Bone Joint Surg Br. 1998; 80:546–552.
26. Qiu X, Lin G, Xin Z, Ferretti L, Zhang H, Lue TF, et al. Effects of low-energy shockwave therapy on the erectile function and tissue of a diabetic rat model. J Sex Med. 2013; 10:738–746.
Article
27. Gruenwald I, Appel B, Vardi Y. Low-intensity extracorporeal shock wave therapy--a novel effective treatment for erectile dysfunction in severe ED patients who respond poorly to PDE5 inhibitor therapy. J Sex Med. 2012; 9:259–264.
Article
28. Liu J, Zhou F, Li GY, Wang L, Li HX, Bai GY, et al. Evaluation of the effect of different doses of low energy shock wave therapy on the erectile function of streptozotocin (STZ)-induced diabetic rats. Int J Mol Sci. 2013; 14:10661–10673.
Article
29. Yu T, Junger WG, Yuan C, Jin A, Zhao Y, Zheng X, et al. Shockwaves increase T-cell proliferation and IL-2 expression through ATP release, P2X7 receptors, and FAK activation. Am J Physiol Cell Physiol. 2010; 298:C457–C464.
Article
30. Xu JK, Chen HJ, Li XD, Huang ZL, Xu H, Yang HL, et al. Optimal intensity shock wave promotes the adhesion and migration of rat osteoblasts via integrin β1-mediated expression of phosphorylated focal adhesion kinase. J Biol Chem. 2012; 287:26200–26212.
Article
31. Aicher A, Heeschen C, Sasaki K, Urbich C, Zeiher AM, Dimmeler S. Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia. Circulation. 2006; 114:2823–2830.
32. Hausner T, Pajer K, Halat G, Hopf R, Schmidhammer R, Redl H, et al. Improved rate of peripheral nerve regeneration induced by extracorporeal shock wave treatment in the rat. Exp Neurol. 2012; 236:363–370.
Article
33. Clark DL, Connors BA, Handa RK, Evan AP. Pretreatment with low-energy shock waves reduces the renal oxidative stress and inflammation caused by high-energy shock wave lithotripsy. Urol Res. 2011; 39:437–442.
Article
34. Sansone V, D' Agostino MC, Bonora C, Sizzano F, De Girolamo L, Romeo P. Early angiogenic response to shock waves in a three-dimensional model of human microvascular endothelial cell culture (HMEC-1). J Biol Regul Homeost Agents. 2012; 26:29–37.
35. Bosch G, de Mos M, van Binsbergen R, van Schie HT, van de Lest CH, van Weeren PR. The effect of focused extracorporeal shock wave therapy on collagen matrix and gene expression in normal tendons and ligaments. Equine Vet J. 2009; 41:335–341.
Article
36. Chen YJ, Wurtz T, Wang CJ, Kuo YR, Yang KD, Huang HC, et al. Recruitment of mesenchymal stem cells and expression of TGF-beta 1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. J Orthop Res. 2004; 22:526–534.
37. Sun D, Junger WG, Yuan C, Zhang W, Bao Y, Qin D, et al. Shockwaves induce osteogenic differentiation of human mesenchymal stem cells through ATP release and activation of P2X7 receptors. Stem Cells. 2013; 31:1170–1180.
Article
38. Tepeköylü C, Wang FS, Kozaryn R, Albrecht-Schgoer K, Theurl M, Schaden W, et al. Shock wave treatment induces angiogenesis and mobilizes endogenous CD31/CD34-positive endothelial cells in a hindlimb ischemia model: Implications for angiogenesis and vasculogenesis. J Thorac Cardiovasc Surg. 2013; 146:971–978.
Article
39. Nishida T, Shimokawa H, Oi K, Tatewaki H, Uwatoku T, Abe K, et al. Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in vivo. Circulation. 2004; 110:3055–3061.
Article
40. Ito K, Fukumoto Y, Shimokawa H. Extracorporeal shock wave therapy as a new and non-invasive angiogenic strategy. Tohoku J Exp Med. 2009; 219:1–9.
Article
41. Silk ZM, Alhuwaila RS, Calder JD. Low-energy extracorporeal shock wave therapy to treat lesser metatarsal fracture nonunion: case report. Foot Ankle Int. 2012; 33:1128–1132.
Article
42. Wilson M, Stacy J. Shock wave therapy for Achilles tendinopathy. Curr Rev Musculoskelet Med. 2010; 4:6–10.
Article
43. Goertz O, Lauer H, Hirsch T, Ring A, Lehnhardt M, Langer S, et al. Extracorporeal shock waves improve angiogenesis after full thickness burn. Burns. 2012; 38:1010–1018.
Article
44. Angehrn F, Kuhn C, Voss A. Can cellulite be treated with low-energy extracorporeal shock wave therapy? Clin Interv Aging. 2007; 2:623–630.
Article
45. Radu CA, Kiefer J, Horn D, Rebel M, Koellensperger E, Gebhard MM, et al. Shock wave treatment in composite tissue allotransplantation. Eplasty. 2011; 11:e37.
46. Gruenwald I, Appel B, Kitrey ND, Vardi Y. Shockwave treatment of erectile dysfunction. Ther Adv Urol. 2013; 5:95–99.
Article
47. Vardi Y, Appel B, Kilchevsky A, Gruenwald I. Does low intensity extracorporeal shock wave therapy have a physiological effect on erectile function? Short-term results of a randomized, double-blind, sham controlled study. J Urol. 2012; 187:1769–1775.
Article
48. Palmieri A, Imbimbo C, Creta M, Verze P, Fusco F, Mirone V. Tadalafil once daily and extracorporeal shock wave therapy in the management of patients with Peyronie's disease and erectile dysfunction: results from a prospective randomized trial. Int J Androl. 2012; 35:190–195.
Article
Full Text Links
  • WJMH
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr