Cancer Res Treat.  2015 Oct;47(4):774-780. 10.4143/crt.2014.189.

Setup Error and Effectiveness of Weekly Image-Guided Radiation Therapy of TomoDirect for Early Breast Cancer

Affiliations
  • 1Department of Radiation Oncology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea. koppul@catholic.ac.kr
  • 2Department of Internal Medicine, Seoul, St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
  • 3Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
  • 4Department of Radiation Oncology, Kyungpook National University, Daegu, Korea.

Abstract

PURPOSE
This study investigated setup error and effectiveness of weekly image-guided radiotherapy (IGRT) of TomoDirect for early breast cancer.
MATERIALS AND METHODS
One hundred and fifty-one breasts of 147 consecutive patients who underwent breast conserving surgery followed by whole breast irradiation using TomoDirect in 2012 and 2013 were evaluated. All patients received weekly IGRT. The weekly setup errors from simulation to each treatment in reference to chest wall and surgical clips were measured. Random, systemic, and 3-dimensional setup errors were assessed. Extensive setup error was defined as 5 mm above the margin in any directions.
RESULTS
All mean errors were within 3 mm of all directions. The mean angle of gantry shifts was 0.6degrees. The mean value of absolute 3-dimensional setup error was 4.67 mm. In multivariate analysis, breast size (odds ratio, 2.82; 95% confidence interval, 1.00 to 7.90) was a significant factor for extensive error. The largest significant deviation of setup error was observed in the first week of radiotherapy (p < 0.001) and the deviations gradually decreased with time. The deviation of setup error was 5.68 mm in the first week and within 5 mm after the second week.
CONCLUSION
In this study, there was a significant association between breast size and significant setup error in breast cancer patients who received TomoDirect. The largest deviation occurred in the first week of treatment. Therefore, patients with large breasts should be closely observed on every fraction and fastidious attention is required in the first fraction of IGRT.

Keyword

Breast neoplasms; Radiation; Radiotherapy setup error; TomoDirect

MeSH Terms

Breast Neoplasms*
Breast*
Humans
Mastectomy, Segmental
Multivariate Analysis
Radiotherapy
Radiotherapy Setup Errors
Radiotherapy, Image-Guided*
Surgical Instruments
Thoracic Wall

Figure

  • Fig. 1. A breast cancer patient was estimated their bust and underbust size with a measuring tape. The breast size was assessed by subtracting underbust size from bust size; small breast, bust size: underbust size < 10 cm; large breast, bust size: underbust size ≥ 10 cm.

  • Fig. 2. TomoDiret planning images which deliver static beams in parallel-opposed angles.

  • Fig. 3. Transverse, coronal and sagittal images show the extensive setup error (> 5 mm) in a breast cancer patient with a large breast by comparing simulation and megavoltage computed tomography before radiation therapy.

  • Fig. 4. Change of weekly absolute 3-dimensional distance of set-up error in whole breast irradiation using TomoDirect.


Cited by  1 articles

Displacement of Surgical Clips during Postoperative Radiotherapy in Breast Cancer Patients Who Received Breast-Conserving Surgery
SooYoon Sung, Joo Hwan Lee, Jong Hoon Lee, Sung Hwan Kim, Yoo-Kang Kwak, Sea-Won Lee, Ye Won Jeon, Young Jin Suh
J Breast Cancer. 2016;19(4):417-422.    doi: 10.4048/jbc.2016.19.4.417.


Reference

References

1. Veronesi U, Cascinelli N, Mariani L, Greco M, Saccozzi R, Luini A, et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med. 2002; 347:1227–32.
Article
2. Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans E, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005; 366:2087–106.
3. Early Breast Cancer Trialists' Collaborative Group (EBCTCG), Darby S, McGale P, Correa C, Taylor C, Arriagada R, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011; 378:1707–16.
4. Badakhshi H, Kaul D, Nadobny J, Wille B, Sehouli J, Budach V. Image-guided volumetric modulated arc therapy for breast cancer: a feasibility study and plan comparison with three-dimensional conformal and intensity-modulated radiotherapy. Br J Radiol. 2013; 86:20130515.
Article
5. Chang SX, Deschesne KM, Cullip TJ, Parker SA, Earnhart J. A comparison of different intensity modulation treatment techniques for tangential breast irradiation. Int J Radiat Oncol Biol Phys. 1999; 45:1305–14.
Article
6. Jin GH, Chen LX, Deng XW, Liu XW, Huang Y, Huang XB. A comparative dosimetric study for treating left-sided breast cancer for small breast size using five different radiotherapy techniques: conventional tangential field, filed-in-filed, tangential-IMRT, multi-beam IMRT and VMAT. Radiat Oncol. 2013; 8:89.
Article
7. Vicini FA, Sharpe M, Kestin L, Martinez A, Mitchell CK, Wallace MF, et al. Optimizing breast cancer treatment efficacy with intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2002; 54:1336–44.
Article
8. Franco P, Zeverino M, Migliaccio F, Sciacero P, Cante D, Casanova Borca V, et al. Intensity-modulated adjuvant whole breast radiation delivered with static angle tomotherapy (TomoDirect): a prospective case series. J Cancer Res Clin Oncol. 2013; 139:1927–36.
Article
9. Franco P, Zeverino M, Migliaccio F, Cante D, Sciacero P, Casanova Borca V, et al. Intensity-modulated and hypofractionated simultaneous integrated boost adjuvant breast radiation employing statics ports of tomotherapy (TomoDirect): a prospective phase II trial. J Cancer Res Clin Oncol. 2014; 140:167–77.
Article
10. Brassiere measurement [ Internet]. Wikipedia; [ cited 2014 Dec 2]. Available from: http://en.wikipedia.org/wiki/Brassiere_measurement.
11. NSABP B-39, RTOG 0413: A randomized phase III study of conventional whole breast irradiation versus partial breast irradiation for women with stage 0, I, or II breast cancer. Clin Adv Hematol Oncol. 2006; 4:719–21.
12. Li XA, Tai A, Arthur DW, Buchholz TA, Macdonald S, Marks LB, et al. Variability of target and normal structure delineation for breast cancer radiotherapy: an RTOG multi-institutional and multiobserver study. Int J Radiat Oncol Biol Phys. 2009; 73:944–51.
Article
13. Stroom JC, de Boer HC, Huizenga H, Visser AG. Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability. Int J Radiat Oncol Biol Phys. 1999; 43:905–19.
Article
14. Yang DS, Yoon WS, Chung SY, Lee JA, Lee S, Park YJ, et al. Set-up uncertainty during breast radiotherapy. Image-guided radiotherapy for patients with initial extensive variation. Strahlenther Onkol. 2013; 189:315–20.
15. Furuya T, Sugimoto S, Kurokawa C, Ozawa S, Karasawa K, Sasai K. The dosimetric impact of respiratory breast movement and daily setup error on tangential whole breast irradiation using conventional wedge, field-in-field and irregular surface compensator techniques. J Radiat Res. 2013; 54:157–65.
Article
16. Chung MJ, Suh YJ, Lee HC, Kang DG, Kim EJ, Kim SH, et al. Tumor bed volumetric changes during breast irradiation for the patients with breast cancer. Radiat Oncol J. 2013; 31:228–33.
Article
17. Lirette A, Pouliot J, Aubin M, Larochelle M. The role of electronic portal imaging in tangential breast irradiation: a prospective study. Radiother Oncol. 1995; 37:241–5.
Article
18. Topolnjak R, Sonke JJ, Nijkamp J, Rasch C, Minkema D, Remeijer P, et al. Breast patient setup error assessment: comparison of electronic portal image devices and cone-beam computed tomography matching results. Int J Radiat Oncol Biol Phys. 2010; 78:1235–43.
Article
19. Offerman S, Lamba M, Lavigne R. Effect of breast volume on treatment reproducibility on a tomotherapy unit in the treatment of breast cancer. Int J Radiat Oncol Biol Phys. 2011; 80:417–21.
20. Lee JH, Kim SH, Suh YJ, Shim BY, Kim HK. Predictors of axillary lymph node metastases (ALNM) in a Korean population with T1-2 breast carcinoma: triple negative breast cancer has a high incidence of ALNM irrespective of the tumor size. Cancer Res Treat. 2010; 42:30–6.
Article
21. Richter A, Sweeney R, Baier K, Flentje M, Guckenberger M. Effect of breathing motion in radiotherapy of breast cancer: 4D dose calculation and motion tracking via EPID. Strahlenther Onkol. 2009; 185:425–30.
22. Bert C, Metheany KG, Doppke KP, Taghian AG, Powell SN, Chen GT. Clinical experience with a 3D surface patient setup system for alignment of partial-breast irradiation patients. Int J Radiat Oncol Biol Phys. 2006; 64:1265–74.
Article
Full Text Links
  • CRT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr